
rmf_traffic
Release 1.0.0

Open Source Robotics Corporation

Mar 20, 2022

CONTENTS:

1 rmf_traffic API 3
1.1 File Hierarchy . 3
1.2 Full API . 3

Index 223

i

ii

rmf_traffic, Release 1.0.0

A package for managing traffic in OpenRMF.

CONTENTS: 1

rmf_traffic, Release 1.0.0

2 CONTENTS:

CHAPTER

ONE

RMF_TRAFFIC API

1.1 File Hierarchy

1.2 Full API

1.2.1 Namespaces

Namespace rmf_traffic

Contents

• Namespaces

• Classes

• Functions

• Typedefs

Namespaces

• Namespace rmf_traffic::@19

• Namespace rmf_traffic::agv

• Namespace rmf_traffic::blockade

• Namespace rmf_traffic::debug

• Namespace rmf_traffic::detail

• Namespace rmf_traffic::geometry

• Namespace rmf_traffic::internal

• Namespace rmf_traffic::schedule

• Namespace rmf_traffic::time

3

rmf_traffic, Release 1.0.0

Classes

• Struct Dependency

• Struct DependsOnPlan::Dependency

• Struct DetectConflict::Conflict

• Struct Trajectory::InsertionResult

• Class DependsOnPlan

• Class DetectConflict

• Class invalid_trajectory_error

• Class Motion

• Class Profile

• Class Region

• Class Route

• Class Trajectory

• Template Class Trajectory::base_iterator

• Class Trajectory::Waypoint

Functions

• Function rmf_traffic::operator!=

• Function rmf_traffic::operator==

Typedefs

• Typedef rmf_traffic::CheckpointId

• Typedef rmf_traffic::ConstRoutePtr

• Typedef rmf_traffic::Dependencies

• Typedef rmf_traffic::DependsOnCheckpoint

• Typedef rmf_traffic::DependsOnParticipant

• Typedef rmf_traffic::DependsOnRoute

• Typedef rmf_traffic::Duration

• Typedef rmf_traffic::ParticipantId

• Typedef rmf_traffic::PlanId

• Typedef rmf_traffic::RouteId

• Typedef rmf_traffic::RoutePtr

• Typedef rmf_traffic::Time

4 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Namespace rmf_traffic::@19

Namespace rmf_traffic::agv

Contents

• Classes

• Functions

Classes

• Struct Plan::Checkpoint

• Struct Plan::Progress

• Struct Debug::Node

• Struct Node::Compare

• Struct RouteValidator::Conflict

• Struct TimeVelocity

• Class CentralizedNegotiation

• Class CentralizedNegotiation::Agent

• Class CentralizedNegotiation::Result

• Class Graph

• Class Graph::Lane

• Class Lane::Dock

• Class Lane::Door

• Class Lane::DoorClose

• Class Lane::DoorOpen

• Class Lane::Event

• Class Lane::Executor

• Class Lane::LiftDoorOpen

• Class Lane::LiftMove

• Class Lane::LiftSession

• Class Lane::LiftSessionBegin

• Class Lane::LiftSessionEnd

• Class Lane::Node

• Class Lane::Properties

• Class Lane::Wait

• Class Graph::OrientationConstraint

1.2. Full API 5

rmf_traffic, Release 1.0.0

• Class Graph::Waypoint

• Class Interpolate

• Class Interpolate::Options

• Class invalid_traits_error

• Class LaneClosure

• Class NegotiatingRouteValidator

• Class NegotiatingRouteValidator::Generator

• Class Plan

• Class Plan::Waypoint

• Class Planner

• Class Planner::Configuration

• Class Planner::Debug

• Class Debug::Progress

• Class Planner::Goal

• Class Planner::Options

• Class Planner::Result

• Class Planner::Start

• Class Rollout

• Class RouteValidator

• Class ScheduleRouteValidator

• Class SimpleNegotiator

• Class SimpleNegotiator::Debug

• Class SimpleNegotiator::Options

• Class VehicleTraits

• Class VehicleTraits::Differential

• Class VehicleTraits::Holonomic

• Class VehicleTraits::Limits

Functions

• Function rmf_traffic::agv::compute_plan_starts

• Function rmf_traffic::agv::interpolate_time_along_quadratic_straight_line

6 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Namespace rmf_traffic::blockade

Contents

• Classes

• Functions

• Typedefs

Classes

• Struct ReservedRange

• Struct Status

• Struct Writer::Checkpoint

• Struct Writer::Reservation

• Class Moderator

• Class Moderator::Assignments

• Class ModeratorRectificationRequesterFactory

• Class Participant

• Class RectificationRequester

• Class RectificationRequesterFactory

• Class Rectifier

• Class Writer

Functions

• Function rmf_traffic::blockade::make_participant

Typedefs

• Typedef rmf_traffic::blockade::CheckpointId

• Typedef rmf_traffic::blockade::ParticipantId

• Typedef rmf_traffic::blockade::ReservationId

• Typedef rmf_traffic::blockade::Version

1.2. Full API 7

rmf_traffic, Release 1.0.0

Namespace rmf_traffic::debug

Contents

• Classes

Classes

• Class Plumber

Namespace rmf_traffic::detail

Contents

• Classes

Classes

• Template Class bidirectional_iterator

• Template Class forward_iterator

Namespace rmf_traffic::geometry

Contents

• Classes

• Functions

• Typedefs

Classes

• Class Circle

• Class ConvexShape

• Class FinalConvexShape

• Class FinalShape

• Class Shape

• Class Space

8 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Functions

• Template Function rmf_traffic::geometry::make_final(Args&&. . .)

• Template Function rmf_traffic::geometry::make_final(const T&)

• Template Function rmf_traffic::geometry::make_final_convex(Args&&. . .)

• Template Function rmf_traffic::geometry::make_final_convex(const T&)

• Function rmf_traffic::geometry::operator!=(const Circle&, const Circle&)

• Function rmf_traffic::geometry::operator!=(const Space&, const Space&)

• Function rmf_traffic::geometry::operator==(const Circle&, const Circle&)

• Function rmf_traffic::geometry::operator==(const Space&, const Space&)

Typedefs

• Typedef rmf_traffic::geometry::ConstConvexShapePtr

• Typedef rmf_traffic::geometry::ConstFinalConvexShapePtr

• Typedef rmf_traffic::geometry::ConstFinalShapePtr

• Typedef rmf_traffic::geometry::ConstShapePtr

• Typedef rmf_traffic::geometry::ConvexShapePtr

• Typedef rmf_traffic::geometry::FinalConvexShapePtr

• Typedef rmf_traffic::geometry::FinalShapePtr

• Typedef rmf_traffic::geometry::ShapePtr

Namespace rmf_traffic::internal

Namespace rmf_traffic::schedule

Contents

• Classes

• Functions

• Typedefs

1.2. Full API 9

rmf_traffic, Release 1.0.0

Classes

• Struct Add::Item

• Struct Inconsistencies::Element

• Struct Ranges::Range

• Template Struct Negotiation::SearchResult

• Struct Negotiation::Submission

• Struct Negotiation::VersionedKey

• Struct Rectifier::Range

• Struct View::Element

• Class Change

• Class Change::Add

• Class Change::Cull

• Class Change::Delay

• Class Change::Erase

• Class Change::Progress

• Class Change::RegisterParticipant

• Class Change::UnregisterParticipant

• Class Change::UpdateParticipantInfo

• Class Database

• Class DatabaseRectificationRequesterFactory

• Class Inconsistencies

• Class Inconsistencies::Ranges

• Class ItineraryViewer

• Class ItineraryViewer::DependencySubscription

• Class Mirror

• Class Negotiation

• Class Negotiation::Evaluator

• Class Negotiation::Table

• Class Table::Viewer

• Class Viewer::Endpoint

• Class Negotiator

• Class Negotiator::Responder

• Class ParticipantDescription

• Class Patch

• Class Patch::Participant

• Class Query

10 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

• Class Query::Participants

• Class Participants::All

• Class Participants::Exclude

• Class Participants::Include

• Class Query::Spacetime

• Class Spacetime::All

• Class Spacetime::Regions

• Class Spacetime::Timespan

• Class QuickestFinishEvaluator

• Class RectificationRequester

• Class RectificationRequesterFactory

• Class Rectifier

• Class SimpleResponder

• Class Snappable

• Class Snapshot

• Class StubbornNegotiator

• Class Viewer

• Class Viewer::View

• Class Writer

• Class Writer::Registration

Functions

• Function rmf_traffic::schedule::make_query(std::vector<Region>)

• Function rmf_traffic::schedule::make_query(std::vector<std::string>, const Time *, const Time *)

• Function rmf_traffic::schedule::operator!=

• Function rmf_traffic::schedule::operator==

• Function rmf_traffic::schedule::query_all

Typedefs

• Typedef rmf_traffic::schedule::Itinerary

• Typedef rmf_traffic::schedule::ItineraryVersion

• Typedef rmf_traffic::schedule::ItineraryView

• Typedef rmf_traffic::schedule::ParticipantDescriptionsMap

• Typedef rmf_traffic::schedule::ParticipantId

• Typedef rmf_traffic::schedule::ProgressVersion

1.2. Full API 11

rmf_traffic, Release 1.0.0

• Typedef rmf_traffic::schedule::StorageId

• Typedef rmf_traffic::schedule::Version

Namespace rmf_traffic::time

Contents

• Functions

Functions

• Function rmf_traffic::time::apply_offset

• Function rmf_traffic::time::from_seconds

• Function rmf_traffic::time::to_seconds

Namespace std

Contents

• Classes

Classes

• Template Struct hash< rmf_traffic::agv::LaneClosure >

1.2.2 Classes and Structs

Struct Plan::Checkpoint

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Planner.hpp

Nested Relationships

This struct is a nested type of Class Plan.

12 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Struct Documentation

struct rmf_traffic::agv::Plan::Checkpoint

Public Members

RouteId route_id

CheckpointId checkpoint_id

Struct Plan::Progress

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Planner.hpp

Nested Relationships

This struct is a nested type of Class Plan.

Struct Documentation

struct rmf_traffic::agv::Plan::Progress

Public Members

std::size_t graph_index

Checkpoints checkpoints

rmf_traffic::Time time

Struct Debug::Node

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_debug_debug_Planner.hpp

Nested Relationships

This struct is a nested type of Class Planner::Debug.

Nested Types

• Struct Node::Compare

1.2. Full API 13

rmf_traffic, Release 1.0.0

Struct Documentation

struct rmf_traffic::agv::Planner::Debug::Node
A Node in the planning search. A final Planning solution will be a chain of these Nodes, aggregated into a Plan
data structure.

Public Types

using SearchQueue = std::priority_queue<ConstNodePtr, std::vector<ConstNodePtr>, Compare>

using Vector = std::vector<ConstNodePtr>

Public Members

ConstNodePtr parent
The parent of this Node. If this is a nullptr, then this was a starting node.

std::vector<Route> route_from_parent
The route that goes from the parent Node to this Node.

double remaining_cost_estimate
An estimate of the remaining cost, based on the heuristic.

double current_cost
The actual cost that has accumulated on the way to this Node.

rmf_utils::optional<std::size_t> waypoint
The waypoint that this Node stops on.

double orientation
The orientation that this Node ends with.

agv::Graph::Lane::EventPtr event
A pointer to an event that occured on the way to this Node.

rmf_utils::optional<std::size_t> start_set_index
If this is a starting node, then this will be the index.

std::size_t id
A unique ID that sticks with this node for its entire lifetime. This will also (roughly) reflect the order of
node creation.

struct Compare

Public Functions

inline bool operator()(const ConstNodePtr &a, const ConstNodePtr &b)

14 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Struct Node::Compare

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_debug_debug_Planner.hpp

Nested Relationships

This struct is a nested type of Struct Debug::Node.

Struct Documentation

struct rmf_traffic::agv::Planner::Debug::Node::Compare

Public Functions

inline bool operator()(const ConstNodePtr &a, const ConstNodePtr &b)

Struct RouteValidator::Conflict

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_RouteValidator.hpp

Nested Relationships

This struct is a nested type of Class RouteValidator.

Struct Documentation

struct rmf_traffic::agv::RouteValidator::Conflict

Public Members

Dependency dependency

Time time

std::shared_ptr<const rmf_traffic::Route> route

Struct TimeVelocity

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Interpolate.hpp

1.2. Full API 15

rmf_traffic, Release 1.0.0

Struct Documentation

struct rmf_traffic::agv::TimeVelocity

Public Members

Time time

Eigen::Vector2d velocity

Struct ReservedRange

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Status.hpp

Struct Documentation

struct rmf_traffic::blockade::ReservedRange

Public Functions

inline bool operator==(const ReservedRange &other) const

Public Members

std::size_t begin

std::size_t end

Struct Status

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Status.hpp

Struct Documentation

struct rmf_traffic::blockade::Status

Public Members

ReservationId reservation

std::optional<CheckpointId> last_ready

CheckpointId last_reached

bool critical_error

16 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Struct Writer::Checkpoint

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Writer.hpp

Nested Relationships

This struct is a nested type of Class Writer.

Struct Documentation

struct rmf_traffic::blockade::Writer::Checkpoint

Public Members

Eigen::Vector2d position

std::string map_name

bool can_hold

Struct Writer::Reservation

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Writer.hpp

Nested Relationships

This struct is a nested type of Class Writer.

Struct Documentation

struct rmf_traffic::blockade::Writer::Reservation

Public Members

std::vector<Checkpoint> path

double radius

Struct Dependency

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Route.hpp

1.2. Full API 17

rmf_traffic, Release 1.0.0

Struct Documentation

struct rmf_traffic::Dependency
Bundle of integers representing a dependency on a checkpoint within a specific participant’s plan.

Public Functions

bool operator==(const Dependency &other) const
Equality operator.

Public Members

uint64_t on_participant

uint64_t on_plan

uint64_t on_route

uint64_t on_checkpoint

Struct DependsOnPlan::Dependency

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Route.hpp

Nested Relationships

This struct is a nested type of Class DependsOnPlan.

Struct Documentation

struct rmf_traffic::DependsOnPlan::Dependency

Public Members

RouteId on_route

CheckpointId on_checkpoint

Struct DetectConflict::Conflict

• Defined in file_latest_rmf_traffic_include_rmf_traffic_DetectConflict.hpp

18 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Nested Relationships

This struct is a nested type of Class DetectConflict.

Struct Documentation

struct rmf_traffic::DetectConflict::Conflict

Public Members

Trajectory::const_iterator a_it

Trajectory::const_iterator b_it

Time time

Struct Add::Item

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Change.hpp

Nested Relationships

This struct is a nested type of Class Change::Add.

Struct Documentation

struct rmf_traffic::schedule::Change::Add::Item
A description of an addition.

Public Members

RouteId route_id
The ID of the route being added, relative to the plan it belongs to.

StorageId storage_id
The storage ID of the route.

ConstRoutePtr route
The information for the route being added.

Struct Inconsistencies::Element

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Inconsistencies.hpp

1.2. Full API 19

rmf_traffic, Release 1.0.0

Nested Relationships

This struct is a nested type of Class Inconsistencies.

Struct Documentation

struct rmf_traffic::schedule::Inconsistencies::Element
An element of the Inconsistencies container. This tells the ranges of inconsistencies that are present for the
specified Participant.

Public Members

ParticipantId participant

Ranges ranges

Struct Ranges::Range

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Inconsistencies.hpp

Nested Relationships

This struct is a nested type of Class Inconsistencies::Ranges.

Struct Documentation

struct rmf_traffic::schedule::Inconsistencies::Ranges::Range
A single range of inconsistencies within a participant.

Every version between (and including) the lower and upper versions have not been received by the Database.

Public Members

ItineraryVersion lower

ItineraryVersion upper

Template Struct Negotiation::SearchResult

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Negotiation.hpp

20 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Nested Relationships

This struct is a nested type of Class Negotiation.

Struct Documentation

template<typename Ptr>
struct rmf_traffic::schedule::Negotiation::SearchResult

Public Functions

inline bool deprecated() const

inline bool absent() const

inline bool found() const

inline operator bool() const

Public Members

SearchStatus status
The status of the search.

Ptr table
The Table that was searched for (or nullptr if status is Deprecated or Absent)

Struct Negotiation::Submission

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Negotiation.hpp

Nested Relationships

This struct is a nested type of Class Negotiation.

Struct Documentation

struct rmf_traffic::schedule::Negotiation::Submission

Public Members

ParticipantId participant

PlanId plan

Itinerary itinerary

1.2. Full API 21

rmf_traffic, Release 1.0.0

Struct Negotiation::VersionedKey

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Negotiation.hpp

Nested Relationships

This struct is a nested type of Class Negotiation.

Struct Documentation

struct rmf_traffic::schedule::Negotiation::VersionedKey
This struct is used to select a child table, demaning a specific version.

Public Functions

inline bool operator==(const VersionedKey &other) const

inline bool operator!=(const VersionedKey &other) const

Public Members

ParticipantId participant

Version version

Struct Rectifier::Range

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Rectifier.hpp

Nested Relationships

This struct is a nested type of Class Rectifier.

Struct Documentation

struct rmf_traffic::schedule::Rectifier::Range
A range of itinerary change IDs that is currently missing from a database. All IDs from lower to upper are
missing, including lower and upper themselves.

It is undefined behavior if the value given to upper is less than the value given to upper.

22 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Members

ItineraryVersion lower
The ID of the first itinerary change in this range that is missing.

ItineraryVersion upper
The ID of the last itinerary change in this range that is missing.

Struct View::Element

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Viewer.hpp

Nested Relationships

This struct is a nested type of Class Viewer::View.

Struct Documentation

struct rmf_traffic::schedule::Viewer::View::Element

Public Members

const ParticipantId participant

const PlanId plan_id

const RouteId route_id

const std::shared_ptr<const Route> route

const ParticipantDescription &description

Struct Trajectory::InsertionResult

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Trajectory.hpp

Nested Relationships

This struct is a nested type of Class Trajectory.

Struct Documentation

struct rmf_traffic::Trajectory::InsertionResult

1.2. Full API 23

rmf_traffic, Release 1.0.0

Public Members

iterator it

bool inserted

Template Struct hash< rmf_traffic::agv::LaneClosure >

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_LaneClosure.hpp

Struct Documentation

template<>
struct std::hash<rmf_traffic::agv::LaneClosure>

Public Functions

inline std::size_t operator()(const rmf_traffic::agv::LaneClosure &closure) const
noexcept

Class CentralizedNegotiation

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_CentralizedNegotiation.hpp

Nested Relationships

Nested Types

• Class CentralizedNegotiation::Agent

• Class CentralizedNegotiation::Result

Class Documentation

class rmf_traffic::agv::CentralizedNegotiation

Public Types

using Proposal = std::unordered_map<schedule::ParticipantId, Plan>
When a proposal is found, it will provide a plan for each agent.

24 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

CentralizedNegotiation(std::shared_ptr<const schedule::Viewer> viewer)
Constructor

Parameters

• [in] viewer: A viewer for the traffic schedule. You may provide a std::shared_ptr<const
schedule::Database> for this. The negotiation will avoid creating any new conflicts with schedule
participants that are not part of the negotiation.

const std::shared_ptr<const schedule::Viewer> &viewer() const
Get the schedule viewer.

CentralizedNegotiation &viewer(std::shared_ptr<const schedule::Viewer> v)
Set the schedule viewer.

CentralizedNegotiation &optimal(bool on = true)
Require the negotiation to consider all combinations so that it finds the (near-)optimal solution. Off by
default.

CentralizedNegotiation &log(bool on = true)
Toggle on/off whether to log the progress of the negotiation and save it in the Result. Off by default.

CentralizedNegotiation &print(bool on = true)
Toggle on/off whether to print the progress of the negotiation while it is running. Off by default.

Result solve(const std::vector<Agent> &agents) const
Solve a centralized negotiation for the given agents.

class Agent

Public Functions

Agent(schedule::ParticipantId id, Plan::Start start, Plan::Goal goal, std::shared_ptr<const Plan-
ner> planner, std::optional<SimpleNegotiator::Options> options = std::nullopt)

Constructor

Parameters
• [in] id: This agent’s ID within the schedule database. If multiple agents are given the same

ID in a negotiation, then a runtime exception will be thrown.
• [in] starts: The starting condition for this agent.
• [in] goal: The goal for this agent.
• [in] planner: The single-agent planner used for this agent. Each agent can have its own

planner or they can share planners. If this is set to nullptr when the negotiation begins, then a
runtime exception will be thrown.

• [in] options: Options to use for the negotiator of this agent. If nullopt is provided, then
the default options of the SimpleNegotiator will be used.

Agent(schedule::ParticipantId id, std::vector<Plan::Start> starts, Plan::Goal goal,
std::shared_ptr<const Planner> planner, std::optional<SimpleNegotiator::Options>
options = std::nullopt)

Constructor

The planner will use whichever starting condition provides the optimal plan.

1.2. Full API 25

rmf_traffic, Release 1.0.0

Parameters
• [in] id: This agent’s ID within the schedule database. If multiple agents are given the same

ID in a negotiation, then a runtime exception will be thrown.
• [in] starts: One or more starting conditions for this agent. If no starting conditions are

provided before the negotiation begins, then a runtime exception will be thrown.

Parameters
• [in] goal: The goal for this agent.
• [in] planner: The single-agent planner used for this agent. Each agent can have its own

planner or they can share planners. If this is set to nullptr when the negotiation begins, then a
runtime exception will be thrown.

• [in] options: Options to use for the negotiator of this agent. If nullopt is provided, then
the default options of the SimpleNegotiator will be used.

schedule::ParticipantId id() const
Get the ID for this agent.

Agent &id(schedule::ParticipantId value)
Set the ID for this agent.

const std::vector<Plan::Start> &starts() const
Get the starts for this agent.

Agent &starts(std::vector<Plan::Start> values)
Set the starts for this agent.

const Plan::Goal &goal() const
Get the goal for this agent.

Agent &goal(Plan::Goal value)
Set the goal for this agent.

const std::shared_ptr<const Planner> &planner() const
Get the planner for this agent.

Agent &planner(std::shared_ptr<const Planner> value)
Set the planner for this agent.

const std::optional<SimpleNegotiator::Options> &options() const
Get the options for this agent.

Agent &options(std::optional<SimpleNegotiator::Options> value)
Set the options for this agent.

class Result

Public Functions

const std::optional<Proposal> &proposal() const
If a solution was found, it will be provided by this proposal.

const std::unordered_set<schedule::ParticipantId> &blockers() const
This is a list of schedule Participants that were not part of the negotiation who blocked the planning
effort. Blockers do not necessarily prevent a solution from being found, but they do prevent the
optimal solution from being available.

const std::vector<std::string> &log() const
A log of messages related to the negotiation. This will be empty unless the log() function of the
CentralizedNegotiation is toggled on before solving.

26 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Class CentralizedNegotiation::Agent

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_CentralizedNegotiation.hpp

Nested Relationships

This class is a nested type of Class CentralizedNegotiation.

Class Documentation

class rmf_traffic::agv::CentralizedNegotiation::Agent

Public Functions

Agent(schedule::ParticipantId id, Plan::Start start, Plan::Goal goal, std::shared_ptr<const Planner>
planner, std::optional<SimpleNegotiator::Options> options = std::nullopt)

Constructor

Parameters

• [in] id: This agent’s ID within the schedule database. If multiple agents are given the same
ID in a negotiation, then a runtime exception will be thrown.

• [in] starts: The starting condition for this agent.

• [in] goal: The goal for this agent.

• [in] planner: The single-agent planner used for this agent. Each agent can have its own
planner or they can share planners. If this is set to nullptr when the negotiation begins, then a
runtime exception will be thrown.

• [in] options: Options to use for the negotiator of this agent. If nullopt is provided, then the
default options of the SimpleNegotiator will be used.

Agent(schedule::ParticipantId id, std::vector<Plan::Start> starts, Plan::Goal goal,
std::shared_ptr<const Planner> planner, std::optional<SimpleNegotiator::Options> options =
std::nullopt)

Constructor

The planner will use whichever starting condition provides the optimal plan.

Parameters

• [in] id: This agent’s ID within the schedule database. If multiple agents are given the same
ID in a negotiation, then a runtime exception will be thrown.

• [in] starts: One or more starting conditions for this agent. If no starting conditions are
provided before the negotiation begins, then a runtime exception will be thrown.

Parameters

• [in] goal: The goal for this agent.

1.2. Full API 27

rmf_traffic, Release 1.0.0

• [in] planner: The single-agent planner used for this agent. Each agent can have its own
planner or they can share planners. If this is set to nullptr when the negotiation begins, then a
runtime exception will be thrown.

• [in] options: Options to use for the negotiator of this agent. If nullopt is provided, then the
default options of the SimpleNegotiator will be used.

schedule::ParticipantId id() const
Get the ID for this agent.

Agent &id(schedule::ParticipantId value)
Set the ID for this agent.

const std::vector<Plan::Start> &starts() const
Get the starts for this agent.

Agent &starts(std::vector<Plan::Start> values)
Set the starts for this agent.

const Plan::Goal &goal() const
Get the goal for this agent.

Agent &goal(Plan::Goal value)
Set the goal for this agent.

const std::shared_ptr<const Planner> &planner() const
Get the planner for this agent.

Agent &planner(std::shared_ptr<const Planner> value)
Set the planner for this agent.

const std::optional<SimpleNegotiator::Options> &options() const
Get the options for this agent.

Agent &options(std::optional<SimpleNegotiator::Options> value)
Set the options for this agent.

Class CentralizedNegotiation::Result

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_CentralizedNegotiation.hpp

Nested Relationships

This class is a nested type of Class CentralizedNegotiation.

Class Documentation

class rmf_traffic::agv::CentralizedNegotiation::Result

28 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

const std::optional<Proposal> &proposal() const
If a solution was found, it will be provided by this proposal.

const std::unordered_set<schedule::ParticipantId> &blockers() const
This is a list of schedule Participants that were not part of the negotiation who blocked the planning effort.
Blockers do not necessarily prevent a solution from being found, but they do prevent the optimal solution
from being available.

const std::vector<std::string> &log() const
A log of messages related to the negotiation. This will be empty unless the log() function of the Central-
izedNegotiation is toggled on before solving.

Class Graph

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

Nested Types

• Class Graph::Lane

• Class Lane::Dock

• Class Lane::Door

• Class Lane::DoorClose

• Class Lane::DoorOpen

• Class Lane::Event

• Class Lane::Executor

• Class Lane::LiftDoorOpen

• Class Lane::LiftMove

• Class Lane::LiftSession

• Class Lane::LiftSessionBegin

• Class Lane::LiftSessionEnd

• Class Lane::Node

• Class Lane::Properties

• Class Lane::Wait

• Class Graph::OrientationConstraint

• Class Graph::Waypoint

1.2. Full API 29

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::agv::Graph

Public Functions

Graph()
Default constructor.

Waypoint &add_waypoint(std::string map_name, Eigen::Vector2d location)
Make a new waypoint for this graph. It will not be connected to any other waypoints until you use
make_lane() to connect it.

Note Waypoints cannot be erased from a Graph after they are created.

Waypoint &get_waypoint(std::size_t index)
Get a waypoint based on its index.

const Waypoint &get_waypoint(std::size_t index) const
const-qualified get_waypoint()

Waypoint *find_waypoint(const std::string &key)
Find a waypoint given a key name. If the graph does not have a matching key name, then a nullptr will be
returned.

const Waypoint *find_waypoint(const std::string &key) const
const-qualified find_waypoint()

bool add_key(const std::string &key, std::size_t wp_index)
Add a new waypoint key name to the graph. If a new key name is given, then this function will return true.
If the given key name was already in use, then this will return false and nothing will be changed in the
graph.

bool remove_key(const std::string &key)
Remove the waypoint key with the given name, if it exists in this Graph. If the key was removed, this will
return true. If the key did not exist, this will return false.

bool set_key(const std::string &key, std::size_t wp_index)
Set a waypoint key. If this key is already in the Graph, it will be changed to the new association.

This function will return false if wp_index is outside the range of the waypoints in this Graph.

const std::unordered_map<std::string, std::size_t> &keys() const
Get the map of all keys in this Graph.

std::size_t num_waypoints() const
Get the number of waypoints in this Graph.

Lane &add_lane(const Lane::Node &entry, const Lane::Node &exit, Lane::Properties properties
= Lane::Properties())

Make a lane for this graph. Lanes connect waypoints together, allowing the graph to know how the robot
is allowed to traverse between waypoints.

Lane &get_lane(std::size_t index)
Get the lane at the specified index.

const Lane &get_lane(std::size_t index) const
const-qualified get_lane()

30 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

std::size_t num_lanes() const
Get the number of Lanes in this Graph.

const std::vector<std::size_t> &lanes_from(std::size_t wp_index) const
Get the indices of lanes that come out of the given Waypoint index.

const std::vector<std::size_t> &lanes_into(std::size_t wp_index) const
Get the indices of lanes that arrive into the given Waypoint index.

Lane *lane_from(std::size_t from_wp, std::size_t to_wp)
Get a reference to the lane that goes from from_wp to to_wp if such a lane exists. If no such lane exists,
this will return a nullptr. If multiple exist, this will return the one that was added most recently.

const Lane *lane_from(std::size_t from_wp, std::size_t to_wp) const
const-qualified lane_from()

class Lane
Add a lane to connect two waypoints.

Public Types

using EventPtr = rmf_utils::clone_ptr<Event>

Public Functions

Node &entry()
Get the entry node of this Lane. The lane represents an edge in the graph that goes away from this
node.

const Node &entry() const
const-qualified entry()

Node &exit()
Get the exit node of this Lane. The lane represents an edge in the graph that goes into this node.

const Node &exit() const
const-qualified exit()

Properties &properties()
Get the properties of this Lane.

const Properties &properties() const
const-qualified properties()

std::size_t index() const
Get the index of this Lane within the Graph.

class Dock

1.2. Full API 31

rmf_traffic, Release 1.0.0

Public Functions

Dock(std::string dock_name, Duration duration)
Constructor

Parameters
• [in] Name: of the dock that will be approached
• [in] How: long the robot will take to dock

const std::string &dock_name() const
Get the name of the dock.

Dock &dock_name(std::string name)
Set the name of the dock.

Duration duration() const
Get an estimate for how long the docking will take.

Dock &duration(Duration d)
Set an estimate for how long the docking will take.

class Door
A door in the graph which needs to be opened before a robot can enter a certain lane or closed before
the robot can exit the lane.

Subclassed by rmf_traffic::agv::Graph::Lane::DoorClose, rmf_traffic::agv::Graph::Lane::DoorOpen

Public Functions

Door(std::string name, Duration duration)
Constructor

Parameters
• [in] name: Unique name of the door.
• [in] duration: How long the door takes to open or close.

const std::string &name() const
Get the unique name (ID) of this Door.

Door &name(std::string name)
Set the unique name (ID) of this Door.

Duration duration() const
Get the duration incurred by waiting for this door to open or close.

Door &duration(Duration duration)
Set the duration incurred by waiting for this door to open or close.

class DoorClose : public rmf_traffic::agv::Graph::Lane::Door

class DoorOpen : public rmf_traffic::agv::Graph::Lane::Door

class Event
An abstraction for the different kinds of Lane events.

32 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

virtual Duration duration() const = 0
An estimate of how long the event will take.

template<typename DerivedExecutor>
inline DerivedExecutor &execute(DerivedExecutor &executor) const

virtual Executor &execute(Executor &executor) const = 0
Execute this event.

virtual EventPtr clone() const = 0
Clone this event.

virtual ~Event() = default

Public Static Functions

static EventPtr make(DoorOpen open)

static EventPtr make(DoorClose close)

static EventPtr make(LiftSessionBegin open)

static EventPtr make(LiftSessionEnd close)

static EventPtr make(LiftMove move)

static EventPtr make(LiftDoorOpen open)

static EventPtr make(Dock dock)

static EventPtr make(Wait wait)

class Executor
A customizable Executor that can carry out actions based on which Event type is present.

Public Types

using DoorOpen = Lane::DoorOpen

using DoorClose = Lane::DoorClose

using LiftSessionBegin = Lane::LiftSessionBegin

using LiftDoorOpen = Lane::LiftDoorOpen

using LiftSessionEnd = Lane::LiftSessionEnd

using LiftMove = Lane::LiftMove

using Dock = Lane::Dock

using Wait = Lane::Wait

1.2. Full API 33

rmf_traffic, Release 1.0.0

Public Functions

virtual void execute(const DoorOpen &open) = 0

virtual void execute(const DoorClose &close) = 0

virtual void execute(const LiftSessionBegin &begin) = 0

virtual void execute(const LiftDoorOpen &open) = 0

virtual void execute(const LiftSessionEnd &end) = 0

virtual void execute(const LiftMove &move) = 0

virtual void execute(const Dock &dock) = 0

virtual void execute(const Wait &wait) = 0

virtual ~Executor() = default

class LiftDoorOpen : public rmf_traffic::agv::Graph::Lane::LiftSession

class LiftMove : public rmf_traffic::agv::Graph::Lane::LiftSession

class LiftSession
A lift door in the graph which needs to be opened before a robot can enter a certain lane or closed
before the robot can exit the lane.

Subclassed by rmf_traffic::agv::Graph::Lane::LiftDoorOpen, rmf_traffic::agv::Graph::Lane::LiftMove,
rmf_traffic::agv::Graph::Lane::LiftSessionBegin, rmf_traffic::agv::Graph::Lane::LiftSessionEnd

Public Functions

LiftSession(std::string lift_name, std::string floor_name, Duration duration)
Constructor

Parameters
• [in] lift_name: Name of the lift that this door belongs to.
• [in] floor_name: Name of the floor that this door belongs to.
• [in] duration: How long the door takes to open or close.

const std::string &lift_name() const
Get the name of the lift that the door belongs to.

LiftSession &lift_name(std::string name)
Set the name of the lift that the door belongs to.

const std::string &floor_name() const
Get the name of the floor that this door is on.

LiftSession &floor_name(std::string name)
Set the name of the floor that this door is on.

Duration duration() const
Get an estimate of how long it will take the door to open or close.

LiftSession &duration(Duration duration)
Set an estimate of how long it will take the door to open or close.

class LiftSessionBegin : public rmf_traffic::agv::Graph::Lane::LiftSession

class LiftSessionEnd : public rmf_traffic::agv::Graph::Lane::LiftSession

34 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

class Node
A Lane Node wraps up a Waypoint with constraints. The constraints stipulate the conditions for
entering or exiting the lane to reach this waypoint.

Public Functions

Node(std::size_t waypoint_index, rmf_utils::clone_ptr<Event> event = nullptr,
rmf_utils::clone_ptr<OrientationConstraint> orientation = nullptr)

Constructor

Parameters
• waypoint_index: The index of the waypoint for this Node
• event: An event that must happen before/after this Node is approached (before if it’s an

entry Node or after if it’s an exit Node).
• orientation: Any orientation constraints for moving to/from this Node (depending on

whether it’s an entry Node or an exit Node).

Node(std::size_t waypoint_index, rmf_utils::clone_ptr<OrientationConstraint> orientation)
Constructor. The event parameter will be nullptr.

Parameters
• waypoint_index: The index of the waypoint for this Node
• orientation: Any orientation constraints for moving to/from this Node (depending on

whether it’s an entry Node or an exit Node).

std::size_t waypoint_index() const
Get the index of the waypoint that this Node is wrapped around.

const Event *event() const
Get a reference to an event that must occur before or after this Node is visited.

Note Before if this is an entry node or after if this is an exit node

Node &event(rmf_utils::clone_ptr<Event> new_event)
Set the event that must occur before or after this Node is visited.

const OrientationConstraint *orientation_constraint() const
Get the constraint on orientation that is tied to this Node.

class Properties
The Lane Properties class contains properties that apply across the full extent of the lane.

Public Functions

Properties()
Construct a default set of properties
• speed_limit: nullopt

std::optional<double> speed_limit() const
Get the speed limit along this lane. If a std::nullopt is returned, then there is no specified speed
limit for the lane.

Properties &speed_limit(std::optional<double> value)
Set the speed limit along this lane. Providing a std::nullopt indicates that there is no speed limit
for the lane.

1.2. Full API 35

rmf_traffic, Release 1.0.0

class Wait

Public Functions

Wait(Duration value)
Constructor

Parameters
• [in] duration: How long the wait will be.

Duration duration() const
Get how long the wait will be.

Wait &duration(Duration value)
Set how long the wait will be.

class OrientationConstraint
A class that implicitly specifies a constraint on the robot’s orientation.

Public Types

enum Direction
Values:

enumerator Forward

enumerator Backward

Public Functions

virtual bool apply(Eigen::Vector3d &position, const Eigen::Vector2d &course_vector)
const = 0

Apply the constraint to the given homogeneous position.

Return True if the constraint is satisfied with the new value of position. False if the constraint could
not be satisfied.

Parameters
• [inout] position: The position which needs to be constrained. The function should

modify this position such that it satisfies the constraint, if possible.
• [in] course_vector: The direction that the robot is travelling in. Given for informa-

tional purposes.

virtual rmf_utils::clone_ptr<OrientationConstraint> clone() const = 0
Clone this OrientationConstraint.

virtual ~OrientationConstraint() = default

36 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Static Functions

static rmf_utils::clone_ptr<OrientationConstraint> make(std::vector<double> accept-
able_orientations)

Make an orientation constraint that requires a specific value for the orientation.

static rmf_utils::clone_ptr<OrientationConstraint> make(Direction direction, const
Eigen::Vector2d &forward_vector)

Make an orientation constraint that requires the vehicle to face forward or backward.

class Waypoint

Public Functions

const std::string &get_map_name() const
Get the name of the map that this Waypoint exists on.

Waypoint &set_map_name(std::string map)
Set the name of the map that this Waypoint exists on.

const Eigen::Vector2d &get_location() const
Get the position of this Waypoint.

Waypoint &set_location(Eigen::Vector2d location)
Set the position of this Waypoint.

bool is_holding_point() const
Returns true if this Waypoint can be used as a holding point for the vehicle, otherwise returns false.

Waypoint &set_holding_point(bool _is_holding_point)
Set whether this waypoint can be used as a holding point for the vehicle.

bool is_passthrough_point() const
Returns true if this Waypoint is a passthrough point, meaning a planner should not have a robot wait
at this point, even just briefly to allow another robot to pass. Setting passthrough points reduces
the branching factor of a planner, allowing it to run faster, at the cost of losing possible solutions to
conflicts.

Waypoint &set_passthrough_point(bool _is_passthrough)
Set this Waypoint to be a passthrough point.

bool is_parking_spot() const
Returns true if this Waypoint is a parking spot. Parking spots are used when an emergency alarm goes
off, and the robot is required to park itself.

Waypoint &set_parking_spot(bool _is_parking_spot)
Set this Waypoint to be a parking spot.

bool is_charger() const
Returns true if this Waypoint is a charger spot. Robots are routed to these spots when their batteries
charge levels drop below the threshold value.

Waypoint &set_charger(bool _is_charger)
Set this Waypoint to be a parking spot.

std::size_t index() const
The index of this waypoint within the Graph. This cannot be changed after the waypoint is created.

const std::string *name() const
If this waypoint has a name, return a reference to it. If this waypoint does not have a name, return a
nullptr.

1.2. Full API 37

rmf_traffic, Release 1.0.0

The name of a waypoint can only be set using add_key() or set_key().

std::string name_or_index(const std::string &name_format = "%s", const std::string &in-
dex_format = "#%d") const

If this waypoint has a name, the name will be returned. Otherwise it will return the waypoint index,
formatted into a string based on the index_format argument.

Parameters
• [in] name_format: If this waypoint has an assigned name, the first instance of “%s”

within name_format will be replaced with the name of the waypoint. If there is no s in the
name_format string, then this function will simply return the name_format string as-is when
the waypoint has a name.

• [in] index_format: If this waypoint does not have an assigned name, the first instance of
“%d” within the index_format string will be replaced with the stringified decimal index value
of the waypoint. If there is no “%d” in the index_format string, then this function will simply
return the index_format string as-is when the waypoint does not have a name.

Class Graph::Lane

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph.

Nested Types

• Class Lane::Dock

• Class Lane::Door

• Class Lane::DoorClose

• Class Lane::DoorOpen

• Class Lane::Event

• Class Lane::Executor

• Class Lane::LiftDoorOpen

• Class Lane::LiftMove

• Class Lane::LiftSession

• Class Lane::LiftSessionBegin

• Class Lane::LiftSessionEnd

• Class Lane::Node

• Class Lane::Properties

• Class Lane::Wait

38 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::agv::Graph::Lane
Add a lane to connect two waypoints.

Public Types

using EventPtr = rmf_utils::clone_ptr<Event>

Public Functions

Node &entry()
Get the entry node of this Lane. The lane represents an edge in the graph that goes away from this node.

const Node &entry() const
const-qualified entry()

Node &exit()
Get the exit node of this Lane. The lane represents an edge in the graph that goes into this node.

const Node &exit() const
const-qualified exit()

Properties &properties()
Get the properties of this Lane.

const Properties &properties() const
const-qualified properties()

std::size_t index() const
Get the index of this Lane within the Graph.

class Dock

Public Functions

Dock(std::string dock_name, Duration duration)
Constructor

Parameters
• [in] Name: of the dock that will be approached
• [in] How: long the robot will take to dock

const std::string &dock_name() const
Get the name of the dock.

Dock &dock_name(std::string name)
Set the name of the dock.

Duration duration() const
Get an estimate for how long the docking will take.

Dock &duration(Duration d)
Set an estimate for how long the docking will take.

1.2. Full API 39

rmf_traffic, Release 1.0.0

class Door
A door in the graph which needs to be opened before a robot can enter a certain lane or closed before the
robot can exit the lane.

Subclassed by rmf_traffic::agv::Graph::Lane::DoorClose, rmf_traffic::agv::Graph::Lane::DoorOpen

Public Functions

Door(std::string name, Duration duration)
Constructor

Parameters
• [in] name: Unique name of the door.
• [in] duration: How long the door takes to open or close.

const std::string &name() const
Get the unique name (ID) of this Door.

Door &name(std::string name)
Set the unique name (ID) of this Door.

Duration duration() const
Get the duration incurred by waiting for this door to open or close.

Door &duration(Duration duration)
Set the duration incurred by waiting for this door to open or close.

class DoorClose : public rmf_traffic::agv::Graph::Lane::Door

class DoorOpen : public rmf_traffic::agv::Graph::Lane::Door

class Event
An abstraction for the different kinds of Lane events.

Public Functions

virtual Duration duration() const = 0
An estimate of how long the event will take.

template<typename DerivedExecutor>
inline DerivedExecutor &execute(DerivedExecutor &executor) const

virtual Executor &execute(Executor &executor) const = 0
Execute this event.

virtual EventPtr clone() const = 0
Clone this event.

virtual ~Event() = default

40 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Static Functions

static EventPtr make(DoorOpen open)

static EventPtr make(DoorClose close)

static EventPtr make(LiftSessionBegin open)

static EventPtr make(LiftSessionEnd close)

static EventPtr make(LiftMove move)

static EventPtr make(LiftDoorOpen open)

static EventPtr make(Dock dock)

static EventPtr make(Wait wait)

class Executor
A customizable Executor that can carry out actions based on which Event type is present.

Public Types

using DoorOpen = Lane::DoorOpen

using DoorClose = Lane::DoorClose

using LiftSessionBegin = Lane::LiftSessionBegin

using LiftDoorOpen = Lane::LiftDoorOpen

using LiftSessionEnd = Lane::LiftSessionEnd

using LiftMove = Lane::LiftMove

using Dock = Lane::Dock

using Wait = Lane::Wait

Public Functions

virtual void execute(const DoorOpen &open) = 0

virtual void execute(const DoorClose &close) = 0

virtual void execute(const LiftSessionBegin &begin) = 0

virtual void execute(const LiftDoorOpen &open) = 0

virtual void execute(const LiftSessionEnd &end) = 0

virtual void execute(const LiftMove &move) = 0

virtual void execute(const Dock &dock) = 0

virtual void execute(const Wait &wait) = 0

virtual ~Executor() = default

class LiftDoorOpen : public rmf_traffic::agv::Graph::Lane::LiftSession

class LiftMove : public rmf_traffic::agv::Graph::Lane::LiftSession

1.2. Full API 41

rmf_traffic, Release 1.0.0

class LiftSession
A lift door in the graph which needs to be opened before a robot can enter a certain lane or closed before
the robot can exit the lane.

Subclassed by rmf_traffic::agv::Graph::Lane::LiftDoorOpen, rmf_traffic::agv::Graph::Lane::LiftMove,
rmf_traffic::agv::Graph::Lane::LiftSessionBegin, rmf_traffic::agv::Graph::Lane::LiftSessionEnd

Public Functions

LiftSession(std::string lift_name, std::string floor_name, Duration duration)
Constructor

Parameters
• [in] lift_name: Name of the lift that this door belongs to.
• [in] floor_name: Name of the floor that this door belongs to.
• [in] duration: How long the door takes to open or close.

const std::string &lift_name() const
Get the name of the lift that the door belongs to.

LiftSession &lift_name(std::string name)
Set the name of the lift that the door belongs to.

const std::string &floor_name() const
Get the name of the floor that this door is on.

LiftSession &floor_name(std::string name)
Set the name of the floor that this door is on.

Duration duration() const
Get an estimate of how long it will take the door to open or close.

LiftSession &duration(Duration duration)
Set an estimate of how long it will take the door to open or close.

class LiftSessionBegin : public rmf_traffic::agv::Graph::Lane::LiftSession

class LiftSessionEnd : public rmf_traffic::agv::Graph::Lane::LiftSession

class Node
A Lane Node wraps up a Waypoint with constraints. The constraints stipulate the conditions for entering
or exiting the lane to reach this waypoint.

Public Functions

Node(std::size_t waypoint_index, rmf_utils::clone_ptr<Event> event = nullptr,
rmf_utils::clone_ptr<OrientationConstraint> orientation = nullptr)

Constructor

Parameters
• waypoint_index: The index of the waypoint for this Node
• event: An event that must happen before/after this Node is approached (before if it’s an entry

Node or after if it’s an exit Node).
• orientation: Any orientation constraints for moving to/from this Node (depending on

whether it’s an entry Node or an exit Node).

42 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Node(std::size_t waypoint_index, rmf_utils::clone_ptr<OrientationConstraint> orientation)
Constructor. The event parameter will be nullptr.

Parameters
• waypoint_index: The index of the waypoint for this Node
• orientation: Any orientation constraints for moving to/from this Node (depending on

whether it’s an entry Node or an exit Node).

std::size_t waypoint_index() const
Get the index of the waypoint that this Node is wrapped around.

const Event *event() const
Get a reference to an event that must occur before or after this Node is visited.

Note Before if this is an entry node or after if this is an exit node

Node &event(rmf_utils::clone_ptr<Event> new_event)
Set the event that must occur before or after this Node is visited.

const OrientationConstraint *orientation_constraint() const
Get the constraint on orientation that is tied to this Node.

class Properties
The Lane Properties class contains properties that apply across the full extent of the lane.

Public Functions

Properties()
Construct a default set of properties

• speed_limit: nullopt

std::optional<double> speed_limit() const
Get the speed limit along this lane. If a std::nullopt is returned, then there is no specified speed limit
for the lane.

Properties &speed_limit(std::optional<double> value)
Set the speed limit along this lane. Providing a std::nullopt indicates that there is no speed limit for
the lane.

class Wait

Public Functions

Wait(Duration value)
Constructor

Parameters
• [in] duration: How long the wait will be.

Duration duration() const
Get how long the wait will be.

Wait &duration(Duration value)
Set how long the wait will be.

1.2. Full API 43

rmf_traffic, Release 1.0.0

Class Lane::Dock

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph::Lane.

Class Documentation

class rmf_traffic::agv::Graph::Lane::Dock

Public Functions

Dock(std::string dock_name, Duration duration)
Constructor

Parameters

• [in] Name: of the dock that will be approached

• [in] How: long the robot will take to dock

const std::string &dock_name() const
Get the name of the dock.

Dock &dock_name(std::string name)
Set the name of the dock.

Duration duration() const
Get an estimate for how long the docking will take.

Dock &duration(Duration d)
Set an estimate for how long the docking will take.

Class Lane::Door

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph::Lane.

44 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Inheritance Relationships

Derived Types

• public rmf_traffic::agv::Graph::Lane::DoorClose (Class Lane::DoorClose)

• public rmf_traffic::agv::Graph::Lane::DoorOpen (Class Lane::DoorOpen)

Class Documentation

class rmf_traffic::agv::Graph::Lane::Door
A door in the graph which needs to be opened before a robot can enter a certain lane or closed before the robot
can exit the lane.

Subclassed by rmf_traffic::agv::Graph::Lane::DoorClose, rmf_traffic::agv::Graph::Lane::DoorOpen

Public Functions

Door(std::string name, Duration duration)
Constructor

Parameters

• [in] name: Unique name of the door.

• [in] duration: How long the door takes to open or close.

const std::string &name() const
Get the unique name (ID) of this Door.

Door &name(std::string name)
Set the unique name (ID) of this Door.

Duration duration() const
Get the duration incurred by waiting for this door to open or close.

Door &duration(Duration duration)
Set the duration incurred by waiting for this door to open or close.

Class Lane::DoorClose

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph::Lane.

1.2. Full API 45

rmf_traffic, Release 1.0.0

Inheritance Relationships

Base Type

• public rmf_traffic::agv::Graph::Lane::Door (Class Lane::Door)

Class Documentation

class DoorClose : public rmf_traffic::agv::Graph::Lane::Door

Class Lane::DoorOpen

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph::Lane.

Inheritance Relationships

Base Type

• public rmf_traffic::agv::Graph::Lane::Door (Class Lane::Door)

Class Documentation

class DoorOpen : public rmf_traffic::agv::Graph::Lane::Door

Class Lane::Event

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph::Lane.

Class Documentation

class rmf_traffic::agv::Graph::Lane::Event
An abstraction for the different kinds of Lane events.

46 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

virtual Duration duration() const = 0
An estimate of how long the event will take.

template<typename DerivedExecutor>
inline DerivedExecutor &execute(DerivedExecutor &executor) const

virtual Executor &execute(Executor &executor) const = 0
Execute this event.

virtual EventPtr clone() const = 0
Clone this event.

virtual ~Event() = default

Public Static Functions

static EventPtr make(DoorOpen open)

static EventPtr make(DoorClose close)

static EventPtr make(LiftSessionBegin open)

static EventPtr make(LiftSessionEnd close)

static EventPtr make(LiftMove move)

static EventPtr make(LiftDoorOpen open)

static EventPtr make(Dock dock)

static EventPtr make(Wait wait)

Class Lane::Executor

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph::Lane.

Class Documentation

class rmf_traffic::agv::Graph::Lane::Executor
A customizable Executor that can carry out actions based on which Event type is present.

1.2. Full API 47

rmf_traffic, Release 1.0.0

Public Types

using DoorOpen = Lane::DoorOpen

using DoorClose = Lane::DoorClose

using LiftSessionBegin = Lane::LiftSessionBegin

using LiftDoorOpen = Lane::LiftDoorOpen

using LiftSessionEnd = Lane::LiftSessionEnd

using LiftMove = Lane::LiftMove

using Dock = Lane::Dock

using Wait = Lane::Wait

Public Functions

virtual void execute(const DoorOpen &open) = 0

virtual void execute(const DoorClose &close) = 0

virtual void execute(const LiftSessionBegin &begin) = 0

virtual void execute(const LiftDoorOpen &open) = 0

virtual void execute(const LiftSessionEnd &end) = 0

virtual void execute(const LiftMove &move) = 0

virtual void execute(const Dock &dock) = 0

virtual void execute(const Wait &wait) = 0

virtual ~Executor() = default

Class Lane::LiftDoorOpen

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph::Lane.

Inheritance Relationships

Base Type

• public rmf_traffic::agv::Graph::Lane::LiftSession (Class Lane::LiftSession)

48 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Class Documentation

class LiftDoorOpen : public rmf_traffic::agv::Graph::Lane::LiftSession

Class Lane::LiftMove

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph::Lane.

Inheritance Relationships

Base Type

• public rmf_traffic::agv::Graph::Lane::LiftSession (Class Lane::LiftSession)

Class Documentation

class LiftMove : public rmf_traffic::agv::Graph::Lane::LiftSession

Class Lane::LiftSession

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph::Lane.

Inheritance Relationships

Derived Types

• public rmf_traffic::agv::Graph::Lane::LiftDoorOpen (Class Lane::LiftDoorOpen)

• public rmf_traffic::agv::Graph::Lane::LiftMove (Class Lane::LiftMove)

• public rmf_traffic::agv::Graph::Lane::LiftSessionBegin (Class
Lane::LiftSessionBegin)

• public rmf_traffic::agv::Graph::Lane::LiftSessionEnd (Class Lane::LiftSessionEnd)

1.2. Full API 49

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::agv::Graph::Lane::LiftSession
A lift door in the graph which needs to be opened before a robot can enter a certain lane or closed before the
robot can exit the lane.

Subclassed by rmf_traffic::agv::Graph::Lane::LiftDoorOpen, rmf_traffic::agv::Graph::Lane::LiftMove,
rmf_traffic::agv::Graph::Lane::LiftSessionBegin, rmf_traffic::agv::Graph::Lane::LiftSessionEnd

Public Functions

LiftSession(std::string lift_name, std::string floor_name, Duration duration)
Constructor

Parameters

• [in] lift_name: Name of the lift that this door belongs to.

• [in] floor_name: Name of the floor that this door belongs to.

• [in] duration: How long the door takes to open or close.

const std::string &lift_name() const
Get the name of the lift that the door belongs to.

LiftSession &lift_name(std::string name)
Set the name of the lift that the door belongs to.

const std::string &floor_name() const
Get the name of the floor that this door is on.

LiftSession &floor_name(std::string name)
Set the name of the floor that this door is on.

Duration duration() const
Get an estimate of how long it will take the door to open or close.

LiftSession &duration(Duration duration)
Set an estimate of how long it will take the door to open or close.

Class Lane::LiftSessionBegin

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph::Lane.

50 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Inheritance Relationships

Base Type

• public rmf_traffic::agv::Graph::Lane::LiftSession (Class Lane::LiftSession)

Class Documentation

class LiftSessionBegin : public rmf_traffic::agv::Graph::Lane::LiftSession

Class Lane::LiftSessionEnd

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph::Lane.

Inheritance Relationships

Base Type

• public rmf_traffic::agv::Graph::Lane::LiftSession (Class Lane::LiftSession)

Class Documentation

class LiftSessionEnd : public rmf_traffic::agv::Graph::Lane::LiftSession

Class Lane::Node

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph::Lane.

Class Documentation

class rmf_traffic::agv::Graph::Lane::Node
A Lane Node wraps up a Waypoint with constraints. The constraints stipulate the conditions for entering or
exiting the lane to reach this waypoint.

1.2. Full API 51

rmf_traffic, Release 1.0.0

Public Functions

Node(std::size_t waypoint_index, rmf_utils::clone_ptr<Event> event = nullptr,
rmf_utils::clone_ptr<OrientationConstraint> orientation = nullptr)

Constructor

Parameters

• waypoint_index: The index of the waypoint for this Node

• event: An event that must happen before/after this Node is approached (before if it’s an entry
Node or after if it’s an exit Node).

• orientation: Any orientation constraints for moving to/from this Node (depending on
whether it’s an entry Node or an exit Node).

Node(std::size_t waypoint_index, rmf_utils::clone_ptr<OrientationConstraint> orientation)
Constructor. The event parameter will be nullptr.

Parameters

• waypoint_index: The index of the waypoint for this Node

• orientation: Any orientation constraints for moving to/from this Node (depending on
whether it’s an entry Node or an exit Node).

std::size_t waypoint_index() const
Get the index of the waypoint that this Node is wrapped around.

const Event *event() const
Get a reference to an event that must occur before or after this Node is visited.

Note Before if this is an entry node or after if this is an exit node

Node &event(rmf_utils::clone_ptr<Event> new_event)
Set the event that must occur before or after this Node is visited.

const OrientationConstraint *orientation_constraint() const
Get the constraint on orientation that is tied to this Node.

Class Lane::Properties

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph::Lane.

52 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::agv::Graph::Lane::Properties
The Lane Properties class contains properties that apply across the full extent of the lane.

Public Functions

Properties()
Construct a default set of properties

• speed_limit: nullopt

std::optional<double> speed_limit() const
Get the speed limit along this lane. If a std::nullopt is returned, then there is no specified speed limit for
the lane.

Properties &speed_limit(std::optional<double> value)
Set the speed limit along this lane. Providing a std::nullopt indicates that there is no speed limit for the
lane.

Class Lane::Wait

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph::Lane.

Class Documentation

class rmf_traffic::agv::Graph::Lane::Wait

Public Functions

Wait(Duration value)
Constructor

Parameters

• [in] duration: How long the wait will be.

Duration duration() const
Get how long the wait will be.

Wait &duration(Duration value)
Set how long the wait will be.

1.2. Full API 53

rmf_traffic, Release 1.0.0

Class Graph::OrientationConstraint

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph.

Class Documentation

class rmf_traffic::agv::Graph::OrientationConstraint
A class that implicitly specifies a constraint on the robot’s orientation.

Public Types

enum Direction
Values:

enumerator Forward

enumerator Backward

Public Functions

virtual bool apply(Eigen::Vector3d &position, const Eigen::Vector2d &course_vector) const =
0

Apply the constraint to the given homogeneous position.

Return True if the constraint is satisfied with the new value of position. False if the constraint could not
be satisfied.

Parameters

• [inout] position: The position which needs to be constrained. The function should modify
this position such that it satisfies the constraint, if possible.

• [in] course_vector: The direction that the robot is travelling in. Given for informational
purposes.

virtual rmf_utils::clone_ptr<OrientationConstraint> clone() const = 0
Clone this OrientationConstraint.

virtual ~OrientationConstraint() = default

54 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Static Functions

static rmf_utils::clone_ptr<OrientationConstraint> make(std::vector<double> accept-
able_orientations)

Make an orientation constraint that requires a specific value for the orientation.

static rmf_utils::clone_ptr<OrientationConstraint> make(Direction direction, const
Eigen::Vector2d &forward_vector)

Make an orientation constraint that requires the vehicle to face forward or backward.

Class Graph::Waypoint

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Graph.hpp

Nested Relationships

This class is a nested type of Class Graph.

Class Documentation

class rmf_traffic::agv::Graph::Waypoint

Public Functions

const std::string &get_map_name() const
Get the name of the map that this Waypoint exists on.

Waypoint &set_map_name(std::string map)
Set the name of the map that this Waypoint exists on.

const Eigen::Vector2d &get_location() const
Get the position of this Waypoint.

Waypoint &set_location(Eigen::Vector2d location)
Set the position of this Waypoint.

bool is_holding_point() const
Returns true if this Waypoint can be used as a holding point for the vehicle, otherwise returns false.

Waypoint &set_holding_point(bool _is_holding_point)
Set whether this waypoint can be used as a holding point for the vehicle.

bool is_passthrough_point() const
Returns true if this Waypoint is a passthrough point, meaning a planner should not have a robot wait at this
point, even just briefly to allow another robot to pass. Setting passthrough points reduces the branching
factor of a planner, allowing it to run faster, at the cost of losing possible solutions to conflicts.

Waypoint &set_passthrough_point(bool _is_passthrough)
Set this Waypoint to be a passthrough point.

bool is_parking_spot() const
Returns true if this Waypoint is a parking spot. Parking spots are used when an emergency alarm goes off,
and the robot is required to park itself.

Waypoint &set_parking_spot(bool _is_parking_spot)
Set this Waypoint to be a parking spot.

1.2. Full API 55

rmf_traffic, Release 1.0.0

bool is_charger() const
Returns true if this Waypoint is a charger spot. Robots are routed to these spots when their batteries charge
levels drop below the threshold value.

Waypoint &set_charger(bool _is_charger)
Set this Waypoint to be a parking spot.

std::size_t index() const
The index of this waypoint within the Graph. This cannot be changed after the waypoint is created.

const std::string *name() const
If this waypoint has a name, return a reference to it. If this waypoint does not have a name, return a nullptr.

The name of a waypoint can only be set using add_key() or set_key().

std::string name_or_index(const std::string &name_format = "%s", const std::string &in-
dex_format = "#%d") const

If this waypoint has a name, the name will be returned. Otherwise it will return the waypoint index,
formatted into a string based on the index_format argument.

Parameters

• [in] name_format: If this waypoint has an assigned name, the first instance of “%s” within
name_format will be replaced with the name of the waypoint. If there is no s in the name_format
string, then this function will simply return the name_format string as-is when the waypoint has
a name.

• [in] index_format: If this waypoint does not have an assigned name, the first instance of
“%d” within the index_format string will be replaced with the stringified decimal index value of
the waypoint. If there is no “%d” in the index_format string, then this function will simply return
the index_format string as-is when the waypoint does not have a name.

Class Interpolate

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Interpolate.hpp

Nested Relationships

Nested Types

• Class Interpolate::Options

Class Documentation

class rmf_traffic::agv::Interpolate

56 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Static Functions

static Trajectory positions(const VehicleTraits &traits, Time start_time, const
std::vector<Eigen::Vector3d> &input_positions, const Options
&options = Options())

class Options

Public Functions

Options(bool always_stop = false, double translation_thresh = 1e-3, double rotation_thresh = 1.0
* M_PI / 180.0, double corner_angle_thresh = 1.0 * M_PI / 180.0)

Options &set_always_stop(bool choice)
The robot must always come to a complete stop at every position. When this is true, all other properties
in the options will have no effect.

bool always_stop() const

Options &set_translation_threshold(double dist)
If a waypoint is closer than this distance to its prior or subsequent waypoint, then it is allowed to be
skipped.

double get_translation_threshold() const
Get the translation threshold.

Options &set_rotation_threshold(double angle)
If a waypoint’s orientation is closer than this angle to the prior or subsequent waypoint, then it is
allowed to be skipped.

double get_rotation_threshold() const
Get the rotation threshold.

Options &set_corner_angle_threshold(double angle)
If two line segments make a corner that is greater than this angle, then the waypoint must not be
ignored.

double get_corner_angle_threshold() const
Get the corner angle threshold.

Class Interpolate::Options

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Interpolate.hpp

Nested Relationships

This class is a nested type of Class Interpolate.

1.2. Full API 57

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::agv::Interpolate::Options

Public Functions

Options(bool always_stop = false, double translation_thresh = 1e-3, double rotation_thresh = 1.0 *
M_PI / 180.0, double corner_angle_thresh = 1.0 * M_PI / 180.0)

Options &set_always_stop(bool choice)
The robot must always come to a complete stop at every position. When this is true, all other properties in
the options will have no effect.

bool always_stop() const

Options &set_translation_threshold(double dist)
If a waypoint is closer than this distance to its prior or subsequent waypoint, then it is allowed to be
skipped.

double get_translation_threshold() const
Get the translation threshold.

Options &set_rotation_threshold(double angle)
If a waypoint’s orientation is closer than this angle to the prior or subsequent waypoint, then it is allowed
to be skipped.

double get_rotation_threshold() const
Get the rotation threshold.

Options &set_corner_angle_threshold(double angle)
If two line segments make a corner that is greater than this angle, then the waypoint must not be ignored.

double get_corner_angle_threshold() const
Get the corner angle threshold.

Class invalid_traits_error

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Interpolate.hpp

Inheritance Relationships

Base Type

• public exception

58 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::agv::invalid_traits_error : public exception
This exception is thrown by Interpolate functions when the VehicleTraits that are provided cannot be interpolated
as requested.

Public Functions

const char *what() const noexcept override

Class LaneClosure

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_LaneClosure.hpp

Class Documentation

class rmf_traffic::agv::LaneClosure
This class describes the closure status of lanes in a Graph, i.e. whether a lane is open or closed. Open lanes can
be used by the planner to reach a goal. The planner will not expand down a lane that is closed.

Public Functions

LaneClosure()
Default constructor.

By default, all lanes are open.

bool is_open(std::size_t lane) const
Check whether the lane corresponding to the given index is open.

Parameters

• [in] lane: The index for the lane of interest

bool is_closed(std::size_t lane) const
Check whether the lane corresponding to the given index is closed.

Parameters

• [in] lane: The index for the lane of interest

LaneClosure &open(std::size_t lane)
Set the lane corresponding to the given index to be open.

Parameters

• [in] lane: The index for the opening lane

LaneClosure &close(std::size_t lane)
Set the lane corresponding to the given index to be closed.

1.2. Full API 59

rmf_traffic, Release 1.0.0

Parameters

• [in] lane: The index for the closing lane

std::size_t hash() const
Get an integer that uniquely describes the overall closure status of the graph lanes.

bool operator==(const LaneClosure &other) const
Equality comparison operator.

Class NegotiatingRouteValidator

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_RouteValidator.hpp

Nested Relationships

Nested Types

• Class NegotiatingRouteValidator::Generator

Inheritance Relationships

Base Type

• public rmf_traffic::agv::RouteValidator (Class RouteValidator)

Class Documentation

class rmf_traffic::agv::NegotiatingRouteValidator : public rmf_traffic::agv::RouteValidator

Public Functions

NegotiatingRouteValidator &mask(schedule::ParticipantId id)
Mask the given Participant so that conflicts with it will be ignored. In the current implementation, only
one participant can be masked at a time.

Parameters

• [in] id: The ID of a participant whose conflicts should be ignored when checking for colli-
sions.

NegotiatingRouteValidator &remove_mask()
Remove any mask that has been applied using the mask() function.

NegotiatingRouteValidator next(schedule::ParticipantId id) const
Get a NegotiatingRouteValidator for the next rollout alternative offered by the given participant.

const schedule::Negotiation::VersionedKeySequence &alternatives() const
Get the set of child Table alternatives used by this NegotiatingRouteValidator.

60 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

operator bool() const
Implicitly cast this validator instance to true if it can be used as a validator. If it cannot be used as a
validator, return false. This will have the opposite value of end().

bool end() const
Return true if this validator object has gone past the end of its limits. Return false if it can still be used as
a validator.

virtual rmf_utils::optional<Conflict> find_conflict(const Route &route) const final
If the specified route has a conflict with another participant, this will return the participant ID for the first
conflict that gets identified. Otherwise it will return a nullopt.

Parameters

• [in] route: The route that is being checked.

virtual std::unique_ptr<RouteValidator> clone() const final
Create a clone of the underlying RouteValidator object.

class Generator
The Generator class begins the creation of NegotiatingRouteValidator instances. NegotiatingRouteValida-
tor may be able to brach in multiple dimensions because of the rollout alternatives that are provided during
a rejection.

Public Functions

Generator(schedule::Negotiation::Table::ViewerPtr viewer, rmf_traffic::Profile profile)
Constructor

This version is safe to use even if the participant being negotiated for is not in the schedule yet.

Parameters
• [in] viewer: A viewer for the Negotiation Table that the generated validators are con-

cerned with
• [in] profile: The profile of the participant whose routes are being validated.

Generator(schedule::Negotiation::Table::ViewerPtr viewer)
Constructor

This version looks for the participant in the schedule to find its profile.

Parameters
• [in] table: A viewer for the Negotiation Table that the generated validators are concerned

with

Generator &ignore_unresponsive(bool val = true)
Toggle whether to ignore “unresponsive” (also called “read-only”) schedule participants when deter-
mining conflicts. By default, conflicts with unresponsive participants will be caught.

Generator &ignore_bystanders(bool val = true)
Toggle whether to ignore “bystanders” which means schedule participants that are not being involved
in the negotiation. By default, conflicts with bystanders will be caught.

NegotiatingRouteValidator begin() const
Start with a NegotiatingRouteValidator that will use all the most preferred alternatives from every
participant.

1.2. Full API 61

rmf_traffic, Release 1.0.0

std::vector<rmf_utils::clone_ptr<NegotiatingRouteValidator>> all() const
Get all the Negotiating Route Validators that can be generated.

const std::vector<schedule::ParticipantId> &alternative_sets() const
Get the set of participants who have specified what their available rollouts are.

std::size_t alternative_count(schedule::ParticipantId participant) const
Get the number of alternative rollouts for the specified participant. This function will throw an ex-
cpetion if participant does not offer an alternative set.

Class NegotiatingRouteValidator::Generator

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_RouteValidator.hpp

Nested Relationships

This class is a nested type of Class NegotiatingRouteValidator.

Class Documentation

class rmf_traffic::agv::NegotiatingRouteValidator::Generator
The Generator class begins the creation of NegotiatingRouteValidator instances. NegotiatingRouteValidator
may be able to brach in multiple dimensions because of the rollout alternatives that are provided during a
rejection.

Public Functions

Generator(schedule::Negotiation::Table::ViewerPtr viewer, rmf_traffic::Profile profile)
Constructor

This version is safe to use even if the participant being negotiated for is not in the schedule yet.

Parameters

• [in] viewer: A viewer for the Negotiation Table that the generated validators are concerned
with

• [in] profile: The profile of the participant whose routes are being validated.

Generator(schedule::Negotiation::Table::ViewerPtr viewer)
Constructor

This version looks for the participant in the schedule to find its profile.

Parameters

• [in] table: A viewer for the Negotiation Table that the generated validators are concerned
with

Generator &ignore_unresponsive(bool val = true)
Toggle whether to ignore “unresponsive” (also called “read-only”) schedule participants when determining
conflicts. By default, conflicts with unresponsive participants will be caught.

62 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Generator &ignore_bystanders(bool val = true)
Toggle whether to ignore “bystanders” which means schedule participants that are not being involved in
the negotiation. By default, conflicts with bystanders will be caught.

NegotiatingRouteValidator begin() const
Start with a NegotiatingRouteValidator that will use all the most preferred alternatives from every partici-
pant.

std::vector<rmf_utils::clone_ptr<NegotiatingRouteValidator>> all() const
Get all the Negotiating Route Validators that can be generated.

const std::vector<schedule::ParticipantId> &alternative_sets() const
Get the set of participants who have specified what their available rollouts are.

std::size_t alternative_count(schedule::ParticipantId participant) const
Get the number of alternative rollouts for the specified participant. This function will throw an excpetion
if participant does not offer an alternative set.

Class Plan

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Planner.hpp

Nested Relationships

Nested Types

• Struct Plan::Checkpoint

• Struct Plan::Progress

• Class Plan::Waypoint

Class Documentation

class rmf_traffic::agv::Plan

Public Types

using Start = Planner::Start

using StartSet = Planner::StartSet

using Goal = Planner::Goal

using Options = Planner::Options

using Configuration = Planner::Configuration

using Result = Planner::Result

using Checkpoints = std::vector<Checkpoint>

1.2. Full API 63

rmf_traffic, Release 1.0.0

Public Functions

const std::vector<Route> &get_itinerary() const
If this Plan is valid, this will return the trajectory of the successful plan. If the Start satisfies the Goal, then
the itinerary will be empty.

const std::vector<Waypoint> &get_waypoints() const
If this plan is valid, this will return the waypoints of the successful plan.

const Start &get_start() const
Get the start condition that was used for this plan.

double get_cost() const
Get the final cost of this plan.

struct Checkpoint

Public Members

RouteId route_id

CheckpointId checkpoint_id

struct Progress

Public Members

std::size_t graph_index

Checkpoints checkpoints

rmf_traffic::Time time

class Waypoint
A Waypoint within a Plan.

This class helps to discretize a Plan based on the Waypoints belonging to the agv::Graph. Each
Graph::Waypoint that the Plan stops or turns at will be accounted for by a Plan::Waypoint.

To indicate the intended orientation, each of these Waypoints provides an Eigen::Vector3d where the third
element is the orientation.

The time that the position is meant to be arrived at is also given by the Waypoint.

Note Users are not allowed to make their own Waypoint instances, because it is too easy to accidentally
get inconsistencies in the position and graph_index fields. Plan::Waypoints can only be created by
Plan instances and can only be retrieved using Plan::get_waypoints().

64 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

const Eigen::Vector3d &position() const
Get the position for this Waypoint.

rmf_traffic::Time time() const
Get the time for this Waypoint.

std::optional<std::size_t> graph_index() const
Get the graph index of this Waypoint.

const std::vector<std::size_t> &approach_lanes() const
Get the graph indices of the lanes that will be traversed on the way to this Waypoint. This will have
multiple values if the robot is able to move straight through multiple lanes without stopping to reach
this Waypoint. It will be empty if the robot does not need to traverse any lanes to reach this Waypoint
(e.g. it is simply turning in place).

const std::vector<Progress> &progress_checkpoints() const
Points on the graph that will be passed along the way to this waypoint.

const Checkpoints &arrival_checkpoints() const
Points in the itinerary that have been reached when the robot arrives at this waypoint.

std::size_t itinerary_index() const

std::size_t trajectory_index() const

const Graph::Lane::Event *event() const
An event that should occur when this waypoint is reached.

const Dependencies &dependencies() const
The dependencies on other traffic participants that must be satisfied before leaving this waypoint.

Class Plan::Waypoint

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Planner.hpp

Nested Relationships

This class is a nested type of Class Plan.

Class Documentation

class rmf_traffic::agv::Plan::Waypoint
A Waypoint within a Plan.

This class helps to discretize a Plan based on the Waypoints belonging to the agv::Graph. Each
Graph::Waypoint that the Plan stops or turns at will be accounted for by a Plan::Waypoint.

To indicate the intended orientation, each of these Waypoints provides an Eigen::Vector3d where the third
element is the orientation.

The time that the position is meant to be arrived at is also given by the Waypoint.

1.2. Full API 65

rmf_traffic, Release 1.0.0

Note Users are not allowed to make their own Waypoint instances, because it is too easy to accidentally get
inconsistencies in the position and graph_index fields. Plan::Waypoints can only be created by Plan in-
stances and can only be retrieved using Plan::get_waypoints().

Public Functions

const Eigen::Vector3d &position() const
Get the position for this Waypoint.

rmf_traffic::Time time() const
Get the time for this Waypoint.

std::optional<std::size_t> graph_index() const
Get the graph index of this Waypoint.

const std::vector<std::size_t> &approach_lanes() const
Get the graph indices of the lanes that will be traversed on the way to this Waypoint. This will have multiple
values if the robot is able to move straight through multiple lanes without stopping to reach this Waypoint.
It will be empty if the robot does not need to traverse any lanes to reach this Waypoint (e.g. it is simply
turning in place).

const std::vector<Progress> &progress_checkpoints() const
Points on the graph that will be passed along the way to this waypoint.

const Checkpoints &arrival_checkpoints() const
Points in the itinerary that have been reached when the robot arrives at this waypoint.

std::size_t itinerary_index() const

std::size_t trajectory_index() const

const Graph::Lane::Event *event() const
An event that should occur when this waypoint is reached.

const Dependencies &dependencies() const
The dependencies on other traffic participants that must be satisfied before leaving this waypoint.

Class Planner

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Planner.hpp

Nested Relationships

Nested Types

• Class Planner::Configuration

• Class Planner::Debug

• Struct Debug::Node

• Struct Node::Compare

• Class Debug::Progress

• Class Planner::Goal

• Class Planner::Options

66 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

• Class Planner::Result

• Class Planner::Start

Class Documentation

class rmf_traffic::agv::Planner

Public Types

using StartSet = std::vector<Start>

Public Functions

Planner(Configuration config, Options default_options)
Constructor

Parameters

• [in] config: This is the Configuration for the Planner. The Planner instance will maintain a
cache while it performs planning requests. This cache will offer potential speed ups to subsequent
planning requests, but the correctness of the cache depends on the fields in the Configuration to
remain constant. Therefore you are not permitted to modify a Planner’s Configuration after the
Planner is constructed. To change the planning Configuration, you will need to create a new
Planner instance with the desired Configuration.

• [in] default_options: Unlike the Configuration, you are allowed to change a Planner’s
Options. The parameter given here will be used as the default options, so you can set them here
and then forget about them. These options can be overriden each time you request a plan.

const Configuration &get_configuration() const
Get a const reference to the configuration for this Planner. Note that the configuration of a planner cannot
be changed once it is set.

Note The Planner maintains a cache that allows searches to become progressively faster. This cache
depends on the fields in the Planner’s configuration, so those fields cannot be changed without inval-
idating that cache. To plan using a different configuration, you should create a new Planner instance
with the desired configuration.

Planner &set_default_options(Options default_options)
Change the default planning options.

Options &get_default_options()
Get a mutable reference to the default planning options.

const Options &get_default_options() const
Get a const reference to the default planning options.

Result plan(const Start &start, Goal goal) const
Produce a plan for the given starting conditions and goal. The default Options of this Planner instance will
be used.

Parameters

1.2. Full API 67

rmf_traffic, Release 1.0.0

• [in] start: The starting conditions

• [in] goal: The goal conditions

Result plan(const Start &start, Goal goal, Options options) const
Product a plan for the given start and goal conditions. Override the default options.

Parameters

• [in] start: The starting conditions

• [in] goal: The goal conditions

• [in] options: The Options to use for this plan. This overrides the default Options of the
Planner instance.

Result plan(const StartSet &starts, Goal goal) const
Produces a plan for the given set of starting conditions and goal. The default Options of this Planner
instance will be used.

The planner will choose the start condition that allows for the shortest plan (not the one that finishes the
soonest according to wall time).

At least one start must be specified or else this is guaranteed to return a nullopt.

Parameters

• [in] starts: The set of available starting conditions

• [in] goal: The goal conditions

Result plan(const StartSet &starts, Goal goal, Options options) const
Produces a plan for the given set of starting conditions and goal. Override the default options.

The planner will choose the start condition that allows for the shortest plan (not the one that finishes the
soonest according to wall time).

At least one start must be specified or else this is guaranteed to return a nullopt.

Parameters

• [in] starts: The starting conditions

• [in] goal: The goal conditions

• [in] options: The options to use for this plan. This overrides the default Options of the
Planner instance.

Result setup(const Start &start, Goal goal) const
Set up a planning job, but do not start iterating.

See plan(const Start&, Goal)

Result setup(const Start &start, Goal goal, Options options) const
Set up a planning job, but do not start iterating.

See plan(const Start&, Goal, Options)

68 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Result setup(const StartSet &starts, Goal goal) const
Set up a planning job, but do not start iterating.

See plan(const StartSet&, Goal)

Result setup(const StartSet &starts, Goal goal, Options options) const
Set up a planning job, but do not start iterating.

See plan(const StartSet&, Goal, Options)

class Configuration
The Configuration class contains planning parameters that are immutable for each Planner instance.

These parameters generally describe the capabilities or behaviors of the AGV that is being planned for, so
they shouldn’t need to change in between plans anyway.

Public Functions

Configuration(Graph graph, VehicleTraits traits, Interpolate::Options interpolation = Interpo-
late::Options())

Constructor

Parameters
• [in] vehicle_traits: The traits of the vehicle that is being planned for
• [in] graph: The graph which is being planned over
• [in] interpolation: The options for how the planner will perform trajectory interpola-

tion

Configuration &graph(Graph graph)
Set the graph to use for planning.

Graph &graph()
Get a mutable reference to the graph.

const Graph &graph() const
Get a const reference to the graph.

Configuration &vehicle_traits(VehicleTraits traits)
Set the vehicle traits to use for planning.

VehicleTraits &vehicle_traits()
Get a mutable reference to the vehicle traits.

const VehicleTraits &vehicle_traits() const
Get a const reference to the vehicle traits.

Configuration &interpolation(Interpolate::Options interpolate)
Set the interpolation options for the planner.

Interpolate::Options &interpolation()
Get a mutable reference to the interpolation options.

const Interpolate::Options &interpolation() const
Get a const reference to the interpolation options.

1.2. Full API 69

rmf_traffic, Release 1.0.0

Configuration &lane_closures(LaneClosure closures)
Set the lane closures for the graph. The planner will not attempt to expand down any lanes that are
closed.

LaneClosure &lane_closures()
Get a mutable reference to the LaneClosure setting.

const LaneClosure &lane_closures() const
Get a const reference to the LaneClosure setting.

Configuration &traversal_cost_per_meter(double value)
How much the cost should increase per meter travelled. Besides this, cost is measured by the number
of seconds spent travelling.

double traversal_cost_per_meter() const
Get the traversal cost.

class Debug
This class exists only for debugging purposes. It is not to be used in live production, and its API is to be
considered unstable at all times. Any minor version increment

Public Types

using ConstNodePtr = std::shared_ptr<const Node>

Public Functions

Debug(const Planner &planner)
Create a debugger for a planner.

Progress begin(const std::vector<Start> &starts, Goal goal, Options options) const
Begin debugging a plan. Call step() on the Progress object until it returns a plan or until the queue is
empty (the Progress object can be treated as a boolean for this purpose).

Public Static Functions

static std::size_t queue_size(const Planner::Result &result)
Get the current size of the frontier queue of a Planner Result.

static std::size_t expansion_count(const Planner::Result &result)
Get the number of search nodes that have been expanded for a Planner Result

static std::size_t node_count(const Planner::Result &result)
Get the current number of nodes that have been created for this Planner Result. This is equal to
queue_size(r) + expansion_count(r).

struct Node
A Node in the planning search. A final Planning solution will be a chain of these Nodes, aggregated
into a Plan data structure.

70 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Types

using SearchQueue = std::priority_queue<ConstNodePtr, std::vector<ConstNodePtr>, Compare>

using Vector = std::vector<ConstNodePtr>

Public Members

ConstNodePtr parent
The parent of this Node. If this is a nullptr, then this was a starting node.

std::vector<Route> route_from_parent
The route that goes from the parent Node to this Node.

double remaining_cost_estimate
An estimate of the remaining cost, based on the heuristic.

double current_cost
The actual cost that has accumulated on the way to this Node.

rmf_utils::optional<std::size_t> waypoint
The waypoint that this Node stops on.

double orientation
The orientation that this Node ends with.

agv::Graph::Lane::EventPtr event
A pointer to an event that occured on the way to this Node.

rmf_utils::optional<std::size_t> start_set_index
If this is a starting node, then this will be the index.

std::size_t id
A unique ID that sticks with this node for its entire lifetime. This will also (roughly) reflect the
order of node creation.

struct Compare

Public Functions

inline bool operator()(const ConstNodePtr &a, const ConstNodePtr &b)

class Progress

Public Functions

rmf_utils::optional<Plan> step()
Step the planner forward one time. This will expand the current highest priority Node in the queue
and move it to the back of expanded_nodes. The nodes that result from the expansion will all be
added to the queue.

inline operator bool() const
Implicitly cast the Progress instance to a boolean. The value will be true if the plan can keep
expanding, and it will be false if it cannot expand any further.

After finding a solution, it may be possible to continue expanding, but there is no point because
the first solution returned is guaranteed to be the optimal one.

1.2. Full API 71

rmf_traffic, Release 1.0.0

const Node::SearchQueue &queue() const
A priority queue of unexpanded Nodes. They are sorted based on g(n)+h(n) in ascending order
(see Node::Compare).

const Node::Vector &expanded_nodes() const
The set of Nodes that have been expanded. They are sorted in the order that they were chosen for
expansion.

const Node::Vector &terminal_nodes() const
The set of Nodes which terminated, meaning it was not possible to expand from them.

class Goal
Describe the goal conditions of a plan.

Public Functions

Goal(std::size_t goal_waypoint)
Constructor

Note With this constructor, any final orientation will be accepted.
Parameters

• [in] goal_waypoint: The waypoint that the AGV needs to reach.

Goal(std::size_t goal_waypoint, double goal_orientation)
Constructor

Parameters
• [in] goal_waypoint: The waypoint that the AGV needs to reach.
• [in] goal_orientation: The orientation that the AGV needs to end with.

Goal(std::size_t goal_waypoint, std::optional<rmf_traffic::Time> minimum_time,
std::optional<double> goal_orientation = std::nullopt)

Constructor

Parameters
• [in] goal_waypoint: The waypoint that the AGV needs to reach.
• [in] minimum_time: The AGV must be on the goal waypoint at or after this time for the

plan to be successful. This is useful if a robot needs to wait at a location, but you want it to
give way for other robots.

• [in] goal_orientation: An optional goal orientation that the AGV needs to end with.

Goal &waypoint(std::size_t goal_waypoint)
Set the goal waypoint.

std::size_t waypoint() const
Get the goal waypoint.

Goal &orientation(double goal_orientation)
Set the goal orientation.

Goal &any_orientation()
Accept any orientation for the final goal.

const double *orientation() const
Get a reference to the goal orientation (or a nullptr if any orientation is acceptable).

72 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Goal &minimum_time(std::optional<rmf_traffic::Time> value)
Set the minimum time for the goal. Pass in a nullopt to remove the minimum time.

std::optional<rmf_traffic::Time> minimum_time() const
Get the minimum time for the goal (or a nullopt is there is no minimum time).

class Options
The Options class contains planning parameters that can change between each planning attempt.

Public Functions

Options(rmf_utils::clone_ptr<RouteValidator> validator, Duration min_hold_time = Default-
MinHoldingTime, std::shared_ptr<const std::atomic_bool> interrupt_flag = nullptr,
std::optional<double> maximum_cost_estimate = std::nullopt, std::optional<std::size_t>
saturation_limit = std::nullopt)

Constructor

Parameters
• [in] validator: A validator to check the validity of the planner’s branching options.
• [in] min_hold_time: The minimum amount of time that the planner should spend wait-

ing at holding points. Smaller values will make the plan more aggressive about being time-
optimal, but the plan may take longer to produce. Larger values will add some latency to the
execution of the plan as the robot may wait at a holding point longer than necessary, but the
plan will usually be generated more quickly.

• [in] interrupt_flag: A pointer to a flag that should be used to interrupt the planner if
it has been running for too long. If the planner should run indefinitely, then pass in a nullptr.

• [in] maximum_cost_estimate: A cap on how high the best possible solution’s cost
can be. If the cost of the best possible solution ever exceeds this value, then the planner will
interrupt itself, no matter what the state of the interrupt_flag is. Set this to nullopt to specify
that there should not be a cap.

• [in] saturation_limit: A cap on how many search nodes the planner is allowed to
produce.

Options(rmf_utils::clone_ptr<RouteValidator> validator, Duration min_hold_time,
std::function<bool)

> interrupterstd::optional<double> maximum_cost_estimate = std::nullopt, std::optional<std::size_t>
saturation_limit = std::nulloptConstructor

Parameters
• [in] validator: A validator to check the validity of the planner’s branching options.
• [in] validator: A validator to check the validity of the planner’s branching options.
• [in] min_hold_time: The minimum amount of time that the planner should spend wait-

ing at holding points. Smaller values will make the plan more aggressive about being time-
optimal, but the plan may take longer to produce. Larger values will add some latency to the
execution of the plan as the robot may wait at a holding point longer than necessary, but the
plan will usually be generated more quickly.

• [in] interrupter: A function that can determine whether the planning should be inter-
rupted. This is an alternative to using the interrupt_flag.

• [in] maximum_cost_estimate: A cap on how high the best possible solution’s cost
can be. If the cost of the best possible solution ever exceeds this value, then the planner will
interrupt itself, no matter what the state of the interrupt_flag is. Set this to nullopt to specify
that there should not be a cap.

• [in] saturation_limit: A cap on how many search nodes the planner is allowed to
produce.

1.2. Full API 73

rmf_traffic, Release 1.0.0

Options &validator(rmf_utils::clone_ptr<RouteValidator> v)
Set the route validator.

const rmf_utils::clone_ptr<RouteValidator> &validator() const
Get the route validator.

Options &minimum_holding_time(Duration holding_time)
Set the minimum amount of time to spend waiting at holding points.

Duration minimum_holding_time() const
Get the minimum amount of time to spend waiting at holding points.

Options &interrupter(std::function<bool)
> cbSet an interrupter callback that can indicate to the planner if it should stop trying to plan.

Warning Using this function will replace anything that was given to interrupt_flag, and it will nullify
the interrupt_flag() field.

const std::function<bool()> &interrupter
constGet the interrupter that will be used in these Options.

Options &interrupt_flag(std::shared_ptr<const std::atomic_bool> flag)
Set an interrupt flag to stop this planner if it has run for too long.

Warning Using this function will replace anything that was given to interrupter.

const std::shared_ptr<const std::atomic_bool> &interrupt_flag() const
Get the interrupt flag that will stop this planner if it has run for too long.

Options &maximum_cost_estimate(std::optional<double> value)
Set the maximum cost estimate that the planner should allow. If the cost estimate of the best possible
plan that the planner could produce ever exceeds this value, the planner will pause itself (but this will
not be considered an interruption).

std::optional<double> maximum_cost_estimate() const
Get the maximum cost estimate that the planner will allow.

Options &saturation_limit(std::optional<std::size_t> value)
Set the saturation limit for the planner. If the planner produces more search nodes than this limit, then
the planning will stop.

std::optional<std::size_t> saturation_limit() const
Get the saturation limit.

Options &dependency_window(std::optional<Duration> value)
Set the dependency window for generated plans. Any potential conflicts with the generated plan that
happen within this window will be added as dependencies to the plan waypoints. If set to a nullopt,
the plan will not have any dependencies.

std::optional<Duration> dependency_window() const
Dependency window for the planner.

Options &dependency_resoution(Duration value)
Set the dependency resolution for generated plans. To check for dependencies, the planner will step
the generated routes back in time by this value and check for conflicts. Detected conflicts get added
to the list of dependencies. This backstepping happens until dependency_window is reached. If
dependency_window is nullopt, this value will not be used.

Duration dependency_resolution() const
Get the dependency resolution for generated plans.

74 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Static Attributes

static constexpr Duration DefaultMinHoldingTime = std::chrono::seconds(1)

class Result

Public Functions

bool success() const
True if a plan was found and this Result can be dereferenced to obtain a plan.

bool disconnected() const
True if there is no feasible path that connects the start to the goal. In this case, a plan will never be
found.

operator bool() const
Implicitly cast the result to a boolean. It will return true if a plan was found, otherwise it will return
false.

const Plan *operator->() const
If the Result was successful, drill into the plan.

const Plan &operator*() const &
If the Result was successful, get a reference to the plan.

Plan &&operator*() &&
If the Result was successful, move the plan.

const Plan &&operator*() const &&
If the Result was successful, get a reference to the plan.

Result replan(const Start &new_start) const
Replan to the same goal from a new start location using the same options as before.

Parameters
• [in] new_start: The starting conditions that should be used for replanning.

Result replan(const Start &new_start, Options new_options) const
Replan to the same goal from a new start location using a new set of options.

Parameters
• [in] new_start: The starting conditions that should be used for replanning.
• [in] new_options: The options that should be used for replanning.

Result replan(const StartSet &new_starts) const
Replan to the same goal from a new set of start locations using the same options.

Parameters
• [in] new_starts: The set of starting conditions that should be used for replanning.

Result replan(const StartSet &new_starts, Options new_options) const
Replan to the same goal from a new set of start locations using a new set of options.

Parameters
• [in] new_starts: The set of starting conditions that should be used for replanning.
• [in] new_options: The options that should be used for replanning.

1.2. Full API 75

rmf_traffic, Release 1.0.0

Result setup(const Start &new_start) const
Set up a new planning job to the same goal, but do not start iterating.

See replan(const Start&)

Result setup(const Start &new_start, Options new_options) const
Set up a new planning job to the same goal, but do not start iterating.

See replan(const Start&, Options)

Result setup(const StartSet &new_starts) const
Set up a new planning job to the same goal, but do not start iterating.

See replan(const StartSet&)

Result setup(const StartSet &new_starts, Options new_options) const
Set up a new planning job to the same goal, but do not start iterating.

See replan(const StartSet&, Options)

bool resume()
Resume planning if the planner was paused.

Return true if a plan has been found, false otherwise.

bool resume(std::shared_ptr<const std::atomic_bool> interrupt_flag)
Resume planning if the planner was paused.

Return true if a plan has been found, false otherwise.
Parameters

• [in] interrupt_flag: A new interrupt flag to listen to while planning.

Options &options()
Get a mutable reference to the options that will be used by this planning task.

const Options &options() const
Get the options that will be used by this planning task.

Result &options(Options new_options)
Change the options to be used by this planning task.

std::optional<double> cost_estimate() const
Get the best cost estimate of the current state of this planner result. This is the value of the lowest
f(n)=g(n)+h(n) in the planner’s queue. If the node queue of this planner result is empty, this will return
a nullopt.

double initial_cost_estimate() const
Get the cost estimate that was initially computed for this plan. If no valid starts were provided, then
this will return infinity.

std::optional<double> ideal_cost() const
Get the cost that this plan would have if there is no traffic. If the plan is impossible (e.g. the starts are
disconnected from the goal) this will return a nullopt.

const std::vector<Start> &get_starts() const
Get the start conditions that were given for this planning task.

76 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

const Goal &get_goal() const
Get the goal for this planning task.

const Configuration &get_configuration() const
If this Plan is valid, this will return the Planner::Configuration that was used to produce it.

If replan() is called, this Planner::Configuration will be used to produce the new Plan.

bool interrupted() const
This will return true if the planning failed because it was interrupted. Otherwise it will return false.

bool saturated() const
This will return true if the planner has reached its saturation limit.

std::vector<schedule::ParticipantId> blockers() const
This is a list of schedule Participants who blocked the planning effort. Blockers do not necessarily
prevent a solution from being found, but they do prevent the optimal solution from being available.

class Start
Describe the starting conditions of a plan.

Public Functions

Start(Time initial_time, std::size_t initial_waypoint, double initial_orientation,
std::optional<Eigen::Vector2d> location = std::nullopt, std::optional<std::size_t> ini-
tial_lane = std::nullopt)

Constructor

Parameters
• [in] inital_time: The starting time of the plan.
• [in] initial_waypoint: The waypoint index that the plan will begin from.
• [in] initial_orientation: The orientation that the AGV will start with.
• [in] initial_location: Optional field to specify if the robot is not starting directly on

the initial_waypoint location. When planning from this initial_location to the initial_waypoint
the planner will assume it has an unconstrained lane.

• [in] initial_lane: Optional field to specify if the robot is starting in a certain lane.
This will only be used if an initial_location is specified.

Start &time(Time initial_time)
Set the starting time of a plan.

Time time() const
Get the starting time.

Start &waypoint(std::size_t initial_waypoint)
Set the starting waypoint of a plan.

std::size_t waypoint() const
Get the starting waypoint.

Start &orientation(double initial_orientation)
Set the starting orientation of a plan.

double orientation() const
Get the starting orientation.

const std::optional<Eigen::Vector2d> &location() const
Get the starting location, if one was specified.

1.2. Full API 77

rmf_traffic, Release 1.0.0

Start &location(std::optional<Eigen::Vector2d> initial_location)
Set the starting location, or remove it by using std::nullopt.

const std::optional<std::size_t> &lane() const
Get the starting lane, if one was specified.

Start &lane(std::optional<std::size_t> initial_lane)
Set the starting lane, or remove it by using std::nullopt.

Class Planner::Configuration

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Planner.hpp

Nested Relationships

This class is a nested type of Class Planner.

Class Documentation

class rmf_traffic::agv::Planner::Configuration
The Configuration class contains planning parameters that are immutable for each Planner instance.

These parameters generally describe the capabilities or behaviors of the AGV that is being planned for, so they
shouldn’t need to change in between plans anyway.

Public Functions

Configuration(Graph graph, VehicleTraits traits, Interpolate::Options interpolation = Interpo-
late::Options())

Constructor

Parameters

• [in] vehicle_traits: The traits of the vehicle that is being planned for

• [in] graph: The graph which is being planned over

• [in] interpolation: The options for how the planner will perform trajectory interpolation

Configuration &graph(Graph graph)
Set the graph to use for planning.

Graph &graph()
Get a mutable reference to the graph.

const Graph &graph() const
Get a const reference to the graph.

Configuration &vehicle_traits(VehicleTraits traits)
Set the vehicle traits to use for planning.

VehicleTraits &vehicle_traits()
Get a mutable reference to the vehicle traits.

const VehicleTraits &vehicle_traits() const
Get a const reference to the vehicle traits.

78 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Configuration &interpolation(Interpolate::Options interpolate)
Set the interpolation options for the planner.

Interpolate::Options &interpolation()
Get a mutable reference to the interpolation options.

const Interpolate::Options &interpolation() const
Get a const reference to the interpolation options.

Configuration &lane_closures(LaneClosure closures)
Set the lane closures for the graph. The planner will not attempt to expand down any lanes that are closed.

LaneClosure &lane_closures()
Get a mutable reference to the LaneClosure setting.

const LaneClosure &lane_closures() const
Get a const reference to the LaneClosure setting.

Configuration &traversal_cost_per_meter(double value)
How much the cost should increase per meter travelled. Besides this, cost is measured by the number of
seconds spent travelling.

double traversal_cost_per_meter() const
Get the traversal cost.

Class Planner::Debug

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_debug_debug_Planner.hpp

Nested Relationships

This class is a nested type of Class Planner.

Nested Types

• Struct Debug::Node

• Struct Node::Compare

• Class Debug::Progress

Class Documentation

class rmf_traffic::agv::Planner::Debug
This class exists only for debugging purposes. It is not to be used in live production, and its API is to be
considered unstable at all times. Any minor version increment

1.2. Full API 79

rmf_traffic, Release 1.0.0

Public Types

using ConstNodePtr = std::shared_ptr<const Node>

Public Functions

Debug(const Planner &planner)
Create a debugger for a planner.

Progress begin(const std::vector<Start> &starts, Goal goal, Options options) const
Begin debugging a plan. Call step() on the Progress object until it returns a plan or until the queue is empty
(the Progress object can be treated as a boolean for this purpose).

Public Static Functions

static std::size_t queue_size(const Planner::Result &result)
Get the current size of the frontier queue of a Planner Result.

static std::size_t expansion_count(const Planner::Result &result)
Get the number of search nodes that have been expanded for a Planner Result

static std::size_t node_count(const Planner::Result &result)
Get the current number of nodes that have been created for this Planner Result. This is equal to
queue_size(r) + expansion_count(r).

struct Node
A Node in the planning search. A final Planning solution will be a chain of these Nodes, aggregated into a
Plan data structure.

Public Types

using SearchQueue = std::priority_queue<ConstNodePtr, std::vector<ConstNodePtr>, Compare>

using Vector = std::vector<ConstNodePtr>

Public Members

ConstNodePtr parent
The parent of this Node. If this is a nullptr, then this was a starting node.

std::vector<Route> route_from_parent
The route that goes from the parent Node to this Node.

double remaining_cost_estimate
An estimate of the remaining cost, based on the heuristic.

double current_cost
The actual cost that has accumulated on the way to this Node.

rmf_utils::optional<std::size_t> waypoint
The waypoint that this Node stops on.

double orientation
The orientation that this Node ends with.

agv::Graph::Lane::EventPtr event
A pointer to an event that occured on the way to this Node.

80 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

rmf_utils::optional<std::size_t> start_set_index
If this is a starting node, then this will be the index.

std::size_t id
A unique ID that sticks with this node for its entire lifetime. This will also (roughly) reflect the order
of node creation.

struct Compare

Public Functions

inline bool operator()(const ConstNodePtr &a, const ConstNodePtr &b)

class Progress

Public Functions

rmf_utils::optional<Plan> step()
Step the planner forward one time. This will expand the current highest priority Node in the queue and
move it to the back of expanded_nodes. The nodes that result from the expansion will all be added to
the queue.

inline operator bool() const
Implicitly cast the Progress instance to a boolean. The value will be true if the plan can keep expand-
ing, and it will be false if it cannot expand any further.

After finding a solution, it may be possible to continue expanding, but there is no point because the
first solution returned is guaranteed to be the optimal one.

const Node::SearchQueue &queue() const
A priority queue of unexpanded Nodes. They are sorted based on g(n)+h(n) in ascending order (see
Node::Compare).

const Node::Vector &expanded_nodes() const
The set of Nodes that have been expanded. They are sorted in the order that they were chosen for
expansion.

const Node::Vector &terminal_nodes() const
The set of Nodes which terminated, meaning it was not possible to expand from them.

Class Debug::Progress

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_debug_debug_Planner.hpp

Nested Relationships

This class is a nested type of Class Planner::Debug.

1.2. Full API 81

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::agv::Planner::Debug::Progress

Public Functions

rmf_utils::optional<Plan> step()
Step the planner forward one time. This will expand the current highest priority Node in the queue and
move it to the back of expanded_nodes. The nodes that result from the expansion will all be added to the
queue.

inline operator bool() const
Implicitly cast the Progress instance to a boolean. The value will be true if the plan can keep expanding,
and it will be false if it cannot expand any further.

After finding a solution, it may be possible to continue expanding, but there is no point because the first
solution returned is guaranteed to be the optimal one.

const Node::SearchQueue &queue() const
A priority queue of unexpanded Nodes. They are sorted based on g(n)+h(n) in ascending order (see
Node::Compare).

const Node::Vector &expanded_nodes() const
The set of Nodes that have been expanded. They are sorted in the order that they were chosen for expansion.

const Node::Vector &terminal_nodes() const
The set of Nodes which terminated, meaning it was not possible to expand from them.

Class Planner::Goal

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Planner.hpp

Nested Relationships

This class is a nested type of Class Planner.

Class Documentation

class rmf_traffic::agv::Planner::Goal
Describe the goal conditions of a plan.

Public Functions

Goal(std::size_t goal_waypoint)
Constructor

Note With this constructor, any final orientation will be accepted.

Parameters

• [in] goal_waypoint: The waypoint that the AGV needs to reach.

82 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Goal(std::size_t goal_waypoint, double goal_orientation)
Constructor

Parameters

• [in] goal_waypoint: The waypoint that the AGV needs to reach.

• [in] goal_orientation: The orientation that the AGV needs to end with.

Goal(std::size_t goal_waypoint, std::optional<rmf_traffic::Time> minimum_time, std::optional<double>
goal_orientation = std::nullopt)

Constructor

Parameters

• [in] goal_waypoint: The waypoint that the AGV needs to reach.

• [in] minimum_time: The AGV must be on the goal waypoint at or after this time for the
plan to be successful. This is useful if a robot needs to wait at a location, but you want it to give
way for other robots.

• [in] goal_orientation: An optional goal orientation that the AGV needs to end with.

Goal &waypoint(std::size_t goal_waypoint)
Set the goal waypoint.

std::size_t waypoint() const
Get the goal waypoint.

Goal &orientation(double goal_orientation)
Set the goal orientation.

Goal &any_orientation()
Accept any orientation for the final goal.

const double *orientation() const
Get a reference to the goal orientation (or a nullptr if any orientation is acceptable).

Goal &minimum_time(std::optional<rmf_traffic::Time> value)
Set the minimum time for the goal. Pass in a nullopt to remove the minimum time.

std::optional<rmf_traffic::Time> minimum_time() const
Get the minimum time for the goal (or a nullopt is there is no minimum time).

Class Planner::Options

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Planner.hpp

1.2. Full API 83

rmf_traffic, Release 1.0.0

Nested Relationships

This class is a nested type of Class Planner.

Class Documentation

class rmf_traffic::agv::Planner::Options
The Options class contains planning parameters that can change between each planning attempt.

Public Functions

Options(rmf_utils::clone_ptr<RouteValidator> validator, Duration min_hold_time = Default-
MinHoldingTime, std::shared_ptr<const std::atomic_bool> interrupt_flag = nullptr,
std::optional<double> maximum_cost_estimate = std::nullopt, std::optional<std::size_t>
saturation_limit = std::nullopt)

Constructor

Parameters

• [in] validator: A validator to check the validity of the planner’s branching options.

• [in] min_hold_time: The minimum amount of time that the planner should spend waiting
at holding points. Smaller values will make the plan more aggressive about being time-optimal,
but the plan may take longer to produce. Larger values will add some latency to the execution of
the plan as the robot may wait at a holding point longer than necessary, but the plan will usually
be generated more quickly.

• [in] interrupt_flag: A pointer to a flag that should be used to interrupt the planner if it
has been running for too long. If the planner should run indefinitely, then pass in a nullptr.

• [in] maximum_cost_estimate: A cap on how high the best possible solution’s cost can
be. If the cost of the best possible solution ever exceeds this value, then the planner will interrupt
itself, no matter what the state of the interrupt_flag is. Set this to nullopt to specify that there
should not be a cap.

• [in] saturation_limit: A cap on how many search nodes the planner is allowed to pro-
duce.

Options(rmf_utils::clone_ptr<RouteValidator> validator, Duration min_hold_time,
std::function<bool)

> interrupterstd::optional<double> maximum_cost_estimate = std::nullopt, std::optional<std::size_t> sat-
uration_limit = std::nulloptConstructor

Parameters

• [in] validator: A validator to check the validity of the planner’s branching options.

• [in] validator: A validator to check the validity of the planner’s branching options.

• [in] min_hold_time: The minimum amount of time that the planner should spend waiting
at holding points. Smaller values will make the plan more aggressive about being time-optimal,
but the plan may take longer to produce. Larger values will add some latency to the execution of
the plan as the robot may wait at a holding point longer than necessary, but the plan will usually
be generated more quickly.

84 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

• [in] interrupter: A function that can determine whether the planning should be inter-
rupted. This is an alternative to using the interrupt_flag.

• [in] maximum_cost_estimate: A cap on how high the best possible solution’s cost can
be. If the cost of the best possible solution ever exceeds this value, then the planner will interrupt
itself, no matter what the state of the interrupt_flag is. Set this to nullopt to specify that there
should not be a cap.

• [in] saturation_limit: A cap on how many search nodes the planner is allowed to pro-
duce.

Options &validator(rmf_utils::clone_ptr<RouteValidator> v)
Set the route validator.

const rmf_utils::clone_ptr<RouteValidator> &validator() const
Get the route validator.

Options &minimum_holding_time(Duration holding_time)
Set the minimum amount of time to spend waiting at holding points.

Duration minimum_holding_time() const
Get the minimum amount of time to spend waiting at holding points.

Options &interrupter(std::function<bool)
> cbSet an interrupter callback that can indicate to the planner if it should stop trying to plan.

Warning Using this function will replace anything that was given to interrupt_flag, and it will nullify the
interrupt_flag() field.

const std::function<bool()> &interrupter
constGet the interrupter that will be used in these Options.

Options &interrupt_flag(std::shared_ptr<const std::atomic_bool> flag)
Set an interrupt flag to stop this planner if it has run for too long.

Warning Using this function will replace anything that was given to interrupter.

const std::shared_ptr<const std::atomic_bool> &interrupt_flag() const
Get the interrupt flag that will stop this planner if it has run for too long.

Options &maximum_cost_estimate(std::optional<double> value)
Set the maximum cost estimate that the planner should allow. If the cost estimate of the best possible plan
that the planner could produce ever exceeds this value, the planner will pause itself (but this will not be
considered an interruption).

std::optional<double> maximum_cost_estimate() const
Get the maximum cost estimate that the planner will allow.

Options &saturation_limit(std::optional<std::size_t> value)
Set the saturation limit for the planner. If the planner produces more search nodes than this limit, then the
planning will stop.

std::optional<std::size_t> saturation_limit() const
Get the saturation limit.

Options &dependency_window(std::optional<Duration> value)
Set the dependency window for generated plans. Any potential conflicts with the generated plan that
happen within this window will be added as dependencies to the plan waypoints. If set to a nullopt, the
plan will not have any dependencies.

1.2. Full API 85

rmf_traffic, Release 1.0.0

std::optional<Duration> dependency_window() const
Dependency window for the planner.

Options &dependency_resoution(Duration value)
Set the dependency resolution for generated plans. To check for dependencies, the planner will step the
generated routes back in time by this value and check for conflicts. Detected conflicts get added to the list of
dependencies. This backstepping happens until dependency_window is reached. If dependency_window
is nullopt, this value will not be used.

Duration dependency_resolution() const
Get the dependency resolution for generated plans.

Public Static Attributes

static constexpr Duration DefaultMinHoldingTime = std::chrono::seconds(1)

Class Planner::Result

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Planner.hpp

Nested Relationships

This class is a nested type of Class Planner.

Class Documentation

class rmf_traffic::agv::Planner::Result

Public Functions

bool success() const
True if a plan was found and this Result can be dereferenced to obtain a plan.

bool disconnected() const
True if there is no feasible path that connects the start to the goal. In this case, a plan will never be found.

operator bool() const
Implicitly cast the result to a boolean. It will return true if a plan was found, otherwise it will return false.

const Plan *operator->() const
If the Result was successful, drill into the plan.

const Plan &operator*() const &
If the Result was successful, get a reference to the plan.

Plan &&operator*() &&
If the Result was successful, move the plan.

const Plan &&operator*() const &&
If the Result was successful, get a reference to the plan.

Result replan(const Start &new_start) const
Replan to the same goal from a new start location using the same options as before.

86 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Parameters

• [in] new_start: The starting conditions that should be used for replanning.

Result replan(const Start &new_start, Options new_options) const
Replan to the same goal from a new start location using a new set of options.

Parameters

• [in] new_start: The starting conditions that should be used for replanning.

• [in] new_options: The options that should be used for replanning.

Result replan(const StartSet &new_starts) const
Replan to the same goal from a new set of start locations using the same options.

Parameters

• [in] new_starts: The set of starting conditions that should be used for replanning.

Result replan(const StartSet &new_starts, Options new_options) const
Replan to the same goal from a new set of start locations using a new set of options.

Parameters

• [in] new_starts: The set of starting conditions that should be used for replanning.

• [in] new_options: The options that should be used for replanning.

Result setup(const Start &new_start) const
Set up a new planning job to the same goal, but do not start iterating.

See replan(const Start&)

Result setup(const Start &new_start, Options new_options) const
Set up a new planning job to the same goal, but do not start iterating.

See replan(const Start&, Options)

Result setup(const StartSet &new_starts) const
Set up a new planning job to the same goal, but do not start iterating.

See replan(const StartSet&)

Result setup(const StartSet &new_starts, Options new_options) const
Set up a new planning job to the same goal, but do not start iterating.

See replan(const StartSet&, Options)

bool resume()
Resume planning if the planner was paused.

Return true if a plan has been found, false otherwise.

1.2. Full API 87

rmf_traffic, Release 1.0.0

bool resume(std::shared_ptr<const std::atomic_bool> interrupt_flag)
Resume planning if the planner was paused.

Return true if a plan has been found, false otherwise.

Parameters

• [in] interrupt_flag: A new interrupt flag to listen to while planning.

Options &options()
Get a mutable reference to the options that will be used by this planning task.

const Options &options() const
Get the options that will be used by this planning task.

Result &options(Options new_options)
Change the options to be used by this planning task.

std::optional<double> cost_estimate() const
Get the best cost estimate of the current state of this planner result. This is the value of the lowest
f(n)=g(n)+h(n) in the planner’s queue. If the node queue of this planner result is empty, this will return a
nullopt.

double initial_cost_estimate() const
Get the cost estimate that was initially computed for this plan. If no valid starts were provided, then this
will return infinity.

std::optional<double> ideal_cost() const
Get the cost that this plan would have if there is no traffic. If the plan is impossible (e.g. the starts are
disconnected from the goal) this will return a nullopt.

const std::vector<Start> &get_starts() const
Get the start conditions that were given for this planning task.

const Goal &get_goal() const
Get the goal for this planning task.

const Configuration &get_configuration() const
If this Plan is valid, this will return the Planner::Configuration that was used to produce it.

If replan() is called, this Planner::Configuration will be used to produce the new Plan.

bool interrupted() const
This will return true if the planning failed because it was interrupted. Otherwise it will return false.

bool saturated() const
This will return true if the planner has reached its saturation limit.

std::vector<schedule::ParticipantId> blockers() const
This is a list of schedule Participants who blocked the planning effort. Blockers do not necessarily prevent
a solution from being found, but they do prevent the optimal solution from being available.

88 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Class Planner::Start

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Planner.hpp

Nested Relationships

This class is a nested type of Class Planner.

Class Documentation

class rmf_traffic::agv::Planner::Start
Describe the starting conditions of a plan.

Public Functions

Start(Time initial_time, std::size_t initial_waypoint, double initial_orientation,
std::optional<Eigen::Vector2d> location = std::nullopt, std::optional<std::size_t> initial_lane =
std::nullopt)

Constructor

Parameters

• [in] inital_time: The starting time of the plan.

• [in] initial_waypoint: The waypoint index that the plan will begin from.

• [in] initial_orientation: The orientation that the AGV will start with.

• [in] initial_location: Optional field to specify if the robot is not starting directly on
the initial_waypoint location. When planning from this initial_location to the initial_waypoint
the planner will assume it has an unconstrained lane.

• [in] initial_lane: Optional field to specify if the robot is starting in a certain lane. This
will only be used if an initial_location is specified.

Start &time(Time initial_time)
Set the starting time of a plan.

Time time() const
Get the starting time.

Start &waypoint(std::size_t initial_waypoint)
Set the starting waypoint of a plan.

std::size_t waypoint() const
Get the starting waypoint.

Start &orientation(double initial_orientation)
Set the starting orientation of a plan.

double orientation() const
Get the starting orientation.

const std::optional<Eigen::Vector2d> &location() const
Get the starting location, if one was specified.

1.2. Full API 89

rmf_traffic, Release 1.0.0

Start &location(std::optional<Eigen::Vector2d> initial_location)
Set the starting location, or remove it by using std::nullopt.

const std::optional<std::size_t> &lane() const
Get the starting lane, if one was specified.

Start &lane(std::optional<std::size_t> initial_lane)
Set the starting lane, or remove it by using std::nullopt.

Class Rollout

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Rollout.hpp

Class Documentation

class rmf_traffic::agv::Rollout
The Rollout class complements the Planner class. The Planner class may sometimes fail to find a feasible plan
because of other traffic participants blocking the way. The rollout class can take a Planner::Result and expand
sets of alternative routes that would be feasible in the absence of a blocker. Given these sets of alternatives,

Public Functions

Rollout(Planner::Result result)
Constructor

Parameters

• [in] result: The Planning Result that should be rolled out.

std::vector<schedule::Itinerary> expand(schedule::ParticipantId blocker, rmf_traffic::Duration
span, const Planner::Options &options,
rmf_utils::optional<std::size_t> max_rollouts =
rmf_utils::nullopt) const

Expand the Planning Result through the specified blocker.

Return a collection of itineraries from the original Planning Result’s starts past the blockages that were
caused by the specified blocker.

Parameters

• [in] blocker: The blocking participant that should be expanded through. If this participant
wasn’t actually blocking, then the returned vector will be empty.

• [in] span: How far into the future the rollout should continue. Once a rollout extends this far,
it will stop wherever it is.

• [in] options: The options to use while expanding. NOTE: It is important to provide a
RouteValidator that will ignore the blocker, otherwise the expansion might not give back any
useful results.

• [in] max_rollouts: The maximum number of rollouts to produce.

90 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

std::vector<schedule::Itinerary> expand(schedule::ParticipantId blocker, rmf_traffic::Duration
span, rmf_utils::optional<std::size_t> max_rollouts =
rmf_utils::nullopt) const

Expand the Planning Result through the specified behavior. Use the Options that are already tied to the
Planning Result.

Warning It is critical to change the validator in the Planner Result Options before giving it to the Rollout
if you want to use this method. Otherwise there will not be any expansion through the blocker.

Return a collection of itineraries from the original Planning Result’s starts past the blockages that were
caused by the specified blocker.

Parameters

• [in] blocker: The blocking participant that should be expanded through. If this participant
wasn’t actually blocking, then the returned vector will be empty.

• [in] span: How far into the future the rollout should continue. Once a rollout extends this far,
it will stop wherever it is.

• [in] max_rollouts: The maximum number of rollouts to produce.

Class RouteValidator

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_RouteValidator.hpp

Nested Relationships

Nested Types

• Struct RouteValidator::Conflict

Inheritance Relationships

Derived Types

• public rmf_traffic::agv::NegotiatingRouteValidator (Class NegotiatingRouteValidator)

• public rmf_traffic::agv::ScheduleRouteValidator (Class ScheduleRouteValidator)

Class Documentation

class rmf_traffic::agv::RouteValidator
The RouteValidator class provides an interface for identifying whether a given route can be considered valid.

Subclassed by rmf_traffic::agv::NegotiatingRouteValidator, rmf_traffic::agv::ScheduleRouteValidator

1.2. Full API 91

rmf_traffic, Release 1.0.0

Public Types

using ParticipantId = schedule::ParticipantId

using Route = rmf_traffic::Route

Public Functions

virtual std::optional<Conflict> find_conflict(const Route &route) const = 0
If the specified route has a conflict with another participant, this will return the participant ID for the first
conflict that gets identified. Otherwise it will return a nullopt.

Parameters

• [in] route: The route that is being checked.

virtual std::unique_ptr<RouteValidator> clone() const = 0
Create a clone of the underlying RouteValidator object.

virtual ~RouteValidator() = default

struct Conflict

Public Members

Dependency dependency

Time time

std::shared_ptr<const rmf_traffic::Route> route

Class ScheduleRouteValidator

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_RouteValidator.hpp

Inheritance Relationships

Base Type

• public rmf_traffic::agv::RouteValidator (Class RouteValidator)

Class Documentation

class rmf_traffic::agv::ScheduleRouteValidator : public rmf_traffic::agv::RouteValidator

92 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

ScheduleRouteValidator(const schedule::Viewer &viewer, schedule::ParticipantId partici-
pant_id, Profile profile)

Constructor

Warning You are expected to maintain the lifetime of the schedule viewer for as long as this ScheduleR-
outeValidator instance is alive. This object will only retain a reference to the viewer, not a copy of
it.

Parameters

• [in] viewer: The schedule viewer which will be used to check for conflicts

• [in] participant: The ID of the participant whose route is being validated. Any routes for
this participant on the schedule will be ignored while validating.

• [in] profile: The profile for the participant. This is not inferred from the viewer because
the viewer might not be synced with the schedule by the time this validator is being used.

ScheduleRouteValidator(std::shared_ptr<const schedule::Viewer> viewer, sched-
ule::ParticipantId participant_id, Profile profile)

Constructor

This constructor will use the profile given to it for the participant that is being planned for. This is safe to
use, even if the participant is not registered in the schedule yet.

Parameters

• [in] viewer: The schedule viewer which will be used ot check for conflicts. The reference
to the viewer will be kept alive.

• [in] participant_id: The ID for the participant that is being validated.

• [in] profile: The profile for the participant.

ScheduleRouteValidator &schedule_viewer(const schedule::Viewer &viewer)
Change the schedule viewer to use for planning.

Warning The Options instance will store a reference to the viewer; it will not store a copy. Therefore you
are responsible for keeping the schedule viewer alive while this Options class is being used.

const schedule::Viewer &schedule_viewer() const
Get a const reference to the schedule viewer that will be used for planning. It is undefined behavior to call
this function is called after the schedule viewer has been destroyed.

ScheduleRouteValidator &participant(schedule::ParticipantId p)
Set the ID of the participant that is being validated.

schedule::ParticipantId participant() const
Get the ID of the participant that is being validated.

virtual std::optional<Conflict> find_conflict(const Route &route) const final
If the specified route has a conflict with another participant, this will return the participant ID for the first
conflict that gets identified. Otherwise it will return a nullopt.

Parameters

1.2. Full API 93

rmf_traffic, Release 1.0.0

• [in] route: The route that is being checked.

virtual std::unique_ptr<RouteValidator> clone() const final
Create a clone of the underlying RouteValidator object.

Public Static Functions

template<typename ...Args>
static inline rmf_utils::clone_ptr<ScheduleRouteValidator> make(Args&&... args)

Make the ScheduleRouteValidator as a clone_ptr.

Class SimpleNegotiator

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_SimpleNegotiator.hpp

Nested Relationships

Nested Types

• Class SimpleNegotiator::Debug

• Class SimpleNegotiator::Options

Inheritance Relationships

Base Type

• public rmf_traffic::schedule::Negotiator (Class Negotiator)

Class Documentation

class rmf_traffic::agv::SimpleNegotiator : public rmf_traffic::schedule::Negotiator
A simple implementation of the schedule::Negotiator class. It uses an agv::Planner to try to find a solution that
fits on the negotiation table.

Public Functions

SimpleNegotiator(schedule::Participant::AssignIDPtr assign_id, Planner::Start start, Plan-
ner::Goal goal, Planner::Configuration planner_configuration, Options options
= Options())

Constructor

Parameters

• [in] assign_id: The ID assignment tool for the participant

• [in] start: The desired start for the plan.

• [in] goal: The desired goal for the plan.

94 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

• [in] planner_configuration: The configuration that will be used by the planner under-
lying this Negotiator.

• [in] options: Additional options that will be used by the Negotiator.

SimpleNegotiator(schedule::Participant::AssignIDPtr assign_id, std::vector<Planner::Start>
starts, Planner::Goal goal, Planner::Configuration planner_configuration,
Options options = Options())

Constructor

Parameters

• [in] assign_id: The ID assignment tool for the participant

• [in] start: A set of starts that can be used.

• [in] goal: The desired goal for the plan.

• [in] planner_configuration: The configuration that will be used by the planner under-
lying this Negotiator.

• [in] options: Additional options that will be used by the Negotiator.

SimpleNegotiator(schedule::Participant::AssignIDPtr assign_id, std::vector<Planner::Start>
starts, Planner::Goal goal, std::shared_ptr<const Planner> planner, Options
options = Options())

Constructor

Parameters

• [in] assign_id: The ID assignment tool for the participant

• [in] starts: A set of starts that can be used.

• [in] goal: The desired goal for the plan.

• [in] planner: The planner to use

• [in] options: Additional options that will be used by the negotiator

virtual void respond(const schedule::Negotiation::Table::ViewerPtr &table_viewer, const Re-
sponderPtr &responder) final

Have the Negotiator respond to an attempt to negotiate.

Parameters

• [in] table: The Negotiation::Table that is being used for the negotiation.

• [in] responder: The Responder instance that the negotiator should use when a response is
ready.

• [in] interrupt_flag: A pointer to a flag that can be used to interrupt the negotiator if it
has been running for too long. If the planner should run indefinitely, then pass a nullptr.

class Debug

1.2. Full API 95

rmf_traffic, Release 1.0.0

Public Static Functions

static SimpleNegotiator &enable_debug_print(SimpleNegotiator &negotiator)

class Options
A class to specify user-defined options for the Negotiator.

Public Types

using ApprovalCallback = std::function<Responder::UpdateVersion(rmf_traffic::agv::Plan)>

Public Functions

Options(ApprovalCallback approval_cb = nullptr, std::shared_ptr<const bool> interrupt_flag
= nullptr, std::optional<double> maximum_cost_leeway = DefaultMaxCostLeeway,
std::optional<std::size_t> maximum_alts = std::nullopt, Duration min_hold_time = Plan-
ner::Options::DefaultMinHoldingTime)

Constructor

Parameters
• [in] approval_cb: The callback that will be triggered if the proposal is approved.
• [in] maximum_cost_leeway: The initial cost estimate for each planning attempt will

be multiplied by this factor to determine the maximum cost estimate that will be allowed for a
plan before giving up.

• [in] maximum_alts: The maximum number of alternatives to produce when rejecting a
proposal from another negotiator.

• [in] min_hold_time: The minimum amount of time that the planner should spend wait-
ing at holding points. See Planner::Options for more information.

Options &approval_callback(ApprovalCallback cb)
Set the approval callback.

Options &interrupt_flag(std::shared_ptr<const bool> flag)
Set the interrupt flag.

const std::shared_ptr<const bool> &interrupt_flag() const
Get the interrupt flag.

Options &maximum_cost_leeway(std::optional<double> leeway)
Set the maximum cost leeway.

std::optional<double> maximum_cost_leeway() const
Get the maximum cost leeway.

Options &minimum_cost_threshold(std::optional<double> cost)
Set the minimum cost threshold. When this and maximum_cost_leeway are both set, the maximum
cost estimate will be chosen by std::max(minimum_cost_threshold, initial_cost_estimate * maxi-
mum_cost_leeway)

By default, this is DefaultMinCostThreshold.

std::optional<double> minimum_cost_threshold() const
Get the minimum cost threshold.

Options &maximum_cost_threshold(std::optional<double> cost)
Set the maximum cost threshold. When this is set, the cost will not be allowed to exceed it, even if
the maximum cost leeway would allow it. By default, this is nullopt.

96 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

std::optional<double> maximum_cost_threshold() const
Get the maximum cost threshold.

Options &maximum_alternatives(rmf_utils::optional<std::size_t> num)

std::optional<std::size_t> maximum_alternatives() const

Options &minimum_holding_time(Duration holding_time)
Set the minimum amount of time to spend waiting at holding points.

Duration minimum_holding_time() const
Get the minimum amount of time to spend waiting at holding points.

Public Static Attributes

static constexpr double DefaultMaxCostLeeway = 1.5

static constexpr double DefaultMinCostThreshold = 30.0

Class SimpleNegotiator::Debug

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_debug_debug_Negotiator.hpp

Nested Relationships

This class is a nested type of Class SimpleNegotiator.

Class Documentation

class rmf_traffic::agv::SimpleNegotiator::Debug

Public Static Functions

static SimpleNegotiator &enable_debug_print(SimpleNegotiator &negotiator)

Class SimpleNegotiator::Options

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_SimpleNegotiator.hpp

Nested Relationships

This class is a nested type of Class SimpleNegotiator.

1.2. Full API 97

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::agv::SimpleNegotiator::Options
A class to specify user-defined options for the Negotiator.

Public Types

using ApprovalCallback = std::function<Responder::UpdateVersion(rmf_traffic::agv::Plan)>

Public Functions

Options(ApprovalCallback approval_cb = nullptr, std::shared_ptr<const bool> interrupt_flag
= nullptr, std::optional<double> maximum_cost_leeway = DefaultMaxCostLeeway,
std::optional<std::size_t> maximum_alts = std::nullopt, Duration min_hold_time = Plan-
ner::Options::DefaultMinHoldingTime)

Constructor

Parameters

• [in] approval_cb: The callback that will be triggered if the proposal is approved.

• [in] maximum_cost_leeway: The initial cost estimate for each planning attempt will be
multiplied by this factor to determine the maximum cost estimate that will be allowed for a plan
before giving up.

• [in] maximum_alts: The maximum number of alternatives to produce when rejecting a
proposal from another negotiator.

• [in] min_hold_time: The minimum amount of time that the planner should spend waiting
at holding points. See Planner::Options for more information.

Options &approval_callback(ApprovalCallback cb)
Set the approval callback.

Options &interrupt_flag(std::shared_ptr<const bool> flag)
Set the interrupt flag.

const std::shared_ptr<const bool> &interrupt_flag() const
Get the interrupt flag.

Options &maximum_cost_leeway(std::optional<double> leeway)
Set the maximum cost leeway.

std::optional<double> maximum_cost_leeway() const
Get the maximum cost leeway.

Options &minimum_cost_threshold(std::optional<double> cost)
Set the minimum cost threshold. When this and maximum_cost_leeway are both set, the maxi-
mum cost estimate will be chosen by std::max(minimum_cost_threshold, initial_cost_estimate * maxi-
mum_cost_leeway)

By default, this is DefaultMinCostThreshold.

std::optional<double> minimum_cost_threshold() const
Get the minimum cost threshold.

98 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Options &maximum_cost_threshold(std::optional<double> cost)
Set the maximum cost threshold. When this is set, the cost will not be allowed to exceed it, even if the
maximum cost leeway would allow it. By default, this is nullopt.

std::optional<double> maximum_cost_threshold() const
Get the maximum cost threshold.

Options &maximum_alternatives(rmf_utils::optional<std::size_t> num)

std::optional<std::size_t> maximum_alternatives() const

Options &minimum_holding_time(Duration holding_time)
Set the minimum amount of time to spend waiting at holding points.

Duration minimum_holding_time() const
Get the minimum amount of time to spend waiting at holding points.

Public Static Attributes

static constexpr double DefaultMaxCostLeeway = 1.5

static constexpr double DefaultMinCostThreshold = 30.0

Class VehicleTraits

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_VehicleTraits.hpp

Nested Relationships

Nested Types

• Class VehicleTraits::Differential

• Class VehicleTraits::Holonomic

• Class VehicleTraits::Limits

Class Documentation

class rmf_traffic::agv::VehicleTraits

Public Types

enum Steering
Values:

enumerator Differential
The vehicle uses differential steering, making it impossible to move laterally.

enumerator Holonomic
The vehicle can move holonomically, so it has no limitations about how it steers.

1.2. Full API 99

rmf_traffic, Release 1.0.0

Public Functions

VehicleTraits(Limits linear, Limits angular, Profile profile, Differential steering = Differential())
Constructor.

Limits &linear()

const Limits &linear() const

Limits &rotational()

const Limits &rotational() const

Profile &profile()

const Profile &profile() const

Steering get_steering() const

Differential &set_differential(Differential parameters = Differential())

Differential *get_differential()

const Differential *get_differential() const

Holonomic &set_holonomic(Holonomic parameters)

Holonomic *get_holonomic()

const Holonomic *get_holonomic() const

bool valid() const
Returns true if the values of the traits are valid. For example, this means that all velocity and acceleration
values are greater than zero.

class Differential

Public Functions

Differential(Eigen::Vector2d forward = Eigen::Vector2d::UnitX(), bool reversible = true)

Differential &set_forward(Eigen::Vector2d forward)

const Eigen::Vector2d &get_forward() const

Differential &set_reversible(bool reversible)

bool is_reversible() const

bool valid() const
Returns true if the length of the forward vector is not too close to zero. If it is too close to zero, then
the direction of the forward vector cannot be reliably interpreted. Ideally the forward vector should
have unit length.

class Holonomic

100 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

Holonomic()

class Limits

Public Functions

Limits(double velocity = 0.0, double acceleration = 0.0)

Limits &set_nominal_velocity(double nom_vel)

double get_nominal_velocity() const

Limits &set_nominal_acceleration(double nom_accel)

double get_nominal_acceleration() const

bool valid() const
Returns true if the values of these limits are valid, i.e. greater than zero.

Class VehicleTraits::Differential

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_VehicleTraits.hpp

Nested Relationships

This class is a nested type of Class VehicleTraits.

Class Documentation

class rmf_traffic::agv::VehicleTraits::Differential

Public Functions

Differential(Eigen::Vector2d forward = Eigen::Vector2d::UnitX(), bool reversible = true)

Differential &set_forward(Eigen::Vector2d forward)

const Eigen::Vector2d &get_forward() const

Differential &set_reversible(bool reversible)

bool is_reversible() const

bool valid() const
Returns true if the length of the forward vector is not too close to zero. If it is too close to zero, then the
direction of the forward vector cannot be reliably interpreted. Ideally the forward vector should have unit
length.

1.2. Full API 101

rmf_traffic, Release 1.0.0

Class VehicleTraits::Holonomic

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_VehicleTraits.hpp

Nested Relationships

This class is a nested type of Class VehicleTraits.

Class Documentation

class rmf_traffic::agv::VehicleTraits::Holonomic

Public Functions

Holonomic()

Class VehicleTraits::Limits

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_VehicleTraits.hpp

Nested Relationships

This class is a nested type of Class VehicleTraits.

Class Documentation

class rmf_traffic::agv::VehicleTraits::Limits

Public Functions

Limits(double velocity = 0.0, double acceleration = 0.0)

Limits &set_nominal_velocity(double nom_vel)

double get_nominal_velocity() const

Limits &set_nominal_acceleration(double nom_accel)

double get_nominal_acceleration() const

bool valid() const
Returns true if the values of these limits are valid, i.e. greater than zero.

102 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Class Moderator

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Moderator.hpp

Nested Relationships

Nested Types

• Class Moderator::Assignments

Inheritance Relationships

Base Type

• public rmf_traffic::blockade::Writer (Class Writer)

Class Documentation

class rmf_traffic::blockade::Moderator : public rmf_traffic::blockade::Writer

Public Functions

virtual void set(ParticipantId participant_id, ReservationId reservation_id, const Reservation
&reservation) final

Set the path reservation of a participant.

If reservation_id is (modularly) less than or equal to the last reservation_id value given for this partici-
pant_id, then this function call will be ignored.

Any previous path reservation will be considered canceled.

virtual void ready(ParticipantId participant_id, ReservationId reservation_id, CheckpointId check-
point) final

Indicate when a participant is ready at a checkpoint.

If reservation_id is not equal to the last reservation_id value given to set() for this participant_id, then this
function call will be ignored.

virtual void release(ParticipantId participant_id, ReservationId reservation_id, CheckpointId
checkpoint) final

Release a checkpoint (and all checkpoints that come after it) from ready status if the participant has not
departed from it yet.

virtual void reached(ParticipantId participant_id, ReservationId reservation_id, CheckpointId
checkpoint) final

Indicate when a participant has reached a checkpoint.

If reservation_id is not equal to the last reservation_id value given to set() for this participant_id, then this
function call will be ignored.

virtual void cancel(ParticipantId participant_id, ReservationId reservation_id) final
Indicate that a path reservation is canceled if reservation_id is (modularly) greater than or equal to the last
reservation_id value given to set() for this participant_id.

1.2. Full API 103

rmf_traffic, Release 1.0.0

virtual void cancel(ParticipantId participant_id) final
Indicate that all path reservations for this participant_id are canceled.

Moderator(std::function<void)std::string
> info_logger = nullptr, std::function<voidstd::string> debug_logger = nullptr, double min_conflict_angle
= 5.0 * M_PI / 180.0Default constructor

Parameters

• [in] info_logger: Provide a callback for logging informational updates about changes in
the blockades, e.g. when a new path arrives, when a checkpoint is reached, or when one is ready.

• [in] debug_logger: Provide a callback for logging debugging information, e.g. which
constraints are blocking a participant from advancing.

• [in] min_conflict_angle: If the angle between two path segments is greater than this
value (radians), then the segments are considered to be in conflict. The default value for this
parameter is 5-degrees. Something larger than 0 is recommended to help deal with numerical
precision concerns.

double minimum_conflict_angle() const
Get the minimum angle that will trigger a conflict.

Moderator &minimum_conflict_angle(double new_value)
Set the minimum angle that will trigger a conflict.

Moderator &info_logger(std::function<void)std::string
> infoSet the information logger for this Moderator. Pass in a nullptr to disable any information logging.

Moderator &debug_logger(std::function<void)std::string
> debugSet the debug logger for this Moderator. Pass in a nullptr to disable any debug logging.

const Assignments &assignments() const
Get the current set of assignments.

const std::unordered_map<ParticipantId, Status> &statuses() const
Get the current known statuses of each participant.

bool has_gridlock() const
Return true if the system is experiencing a gridlock.

class Assignments
This class indicates the range of each reservation that the blockade moderator has assigned as active. Each
robot is allowed to move at will from the begin checkpoint to the end checkpoint in the range assigned for
it.

Public Functions

std::size_t version() const
Get the version of the current assignment sets. The version number will increase by at least 1 each
time the assignments change. This can be used to identify when new assignment notifications are
necessary.

const std::unordered_map<ParticipantId, ReservedRange> &ranges() const
Get the ranges that are assigned to each participant.

104 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Class Moderator::Assignments

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Moderator.hpp

Nested Relationships

This class is a nested type of Class Moderator.

Class Documentation

class rmf_traffic::blockade::Moderator::Assignments
This class indicates the range of each reservation that the blockade moderator has assigned as active. Each robot
is allowed to move at will from the begin checkpoint to the end checkpoint in the range assigned for it.

Public Functions

std::size_t version() const
Get the version of the current assignment sets. The version number will increase by at least 1 each time
the assignments change. This can be used to identify when new assignment notifications are necessary.

const std::unordered_map<ParticipantId, ReservedRange> &ranges() const
Get the ranges that are assigned to each participant.

Class ModeratorRectificationRequesterFactory

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Rectifier.hpp

Inheritance Relationships

Base Type

• public rmf_traffic::blockade::RectificationRequesterFactory (Class Rectification-
RequesterFactory)

Class Documentation

class rmf_traffic::blockade::ModeratorRectificationRequesterFactory : public rmf_traffic::blockade::RectificationRequesterFactory
This class provides a simple implementation of a RectificationRequesterFactory that just hooks directly into a
Moderator instance and issues rectification requests when told to based on the current inconsistencies in the
Database.

1.2. Full API 105

rmf_traffic, Release 1.0.0

Public Functions

ModeratorRectificationRequesterFactory(std::shared_ptr<Moderator> moderator)
Constructor

Parameters

• [in] moderator: The moderator object that this will rectify for.

virtual std::unique_ptr<RectificationRequester> make(Rectifier rectifier, ParticipantId partici-
pant_id) final

Create a RectificationRequester to be held by a Participant

Parameters

• [in] rectifier: This rectifier can be used by the RectificationRequester to ask the partici-
pant to check its status.

• [in] participant_id: The ID of the participant that will hold onto this RectificationRe-
quester. This is the same participant that the rectifier will request for checks.

void rectify()
Call this function to instruct all the RectificationRequesters produced by this factory to perform their
rectifications.

Class Participant

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Participant.hpp

Class Documentation

class rmf_traffic::blockade::Participant

Public Functions

void radius(double new_radius)
Change the radius for this participant. This will only take effect when a new path is set using the set()
function.

double radius() const
Get the radius that’s being used for this participant.

void set(std::vector<Writer::Checkpoint> path)
Set the path for this participant.

Parameters

• [in] path: The path that this participant intends to follow.

const std::vector<Writer::Checkpoint> &path() const
Get the current path for this participant.

void ready(CheckpointId checkpoint)
Tell the blockade writer that the participant is ready to depart from the given checkpoint.

106 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

void release(CheckpointId checkpoint)
Tell the blockade writer that the participant is releasing its departure from the given checkpoint.

std::optional<CheckpointId> last_ready() const
Get the last checkpoint that this participant said it is ready to depart from.

void reached(CheckpointId checkpoint)
Tell the blockade writer that the participant has reached the given checkpoint.

void cancel()
Cancel the current path entirely. Note that if a path is canceled while the robot is in space that it needs to
share with other robots, a permanent deadlock could result.

CheckpointId last_reached() const
Get the last checkpoint that this participant said it has reached.

ParticipantId id() const
Get the ID that was assigned to this participant.

std::optional<ReservationId> reservation_id() const
Get the current reservation ID.

Class RectificationRequester

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Rectifier.hpp

Class Documentation

class rmf_traffic::blockade::RectificationRequester
RectificationRequester is a pure abstract class which should be implemented for any middlewares that intend to
act as transport layers for the scheduling system.

Classes that derive from RectificationRequester do not need to implement any interfaces, but they should practice
RAII. The lifecycle of the RectificationRequester will be tied to the Participant that it was created for.

When a schedule database reports an inconsistency for the participant tied to a RectificationRequester instance,
the instance should call Rectifier::check() on the Rectifier that was assigned to it.

Public Functions

virtual ~RectificationRequester() = 0
This destructor is pure virtual to ensure that a derived class is instantiated.

Class RectificationRequesterFactory

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Rectifier.hpp

1.2. Full API 107

rmf_traffic, Release 1.0.0

Inheritance Relationships

Derived Type

• public rmf_traffic::blockade::ModeratorRectificationRequesterFactory (Class
ModeratorRectificationRequesterFactory)

Class Documentation

class rmf_traffic::blockade::RectificationRequesterFactory
The RectificationRequesterFactory is a pure abstract interface class which should be implemented for any mid-
dlewares that intend to act as transport layers for the blockade system.

Subclassed by rmf_traffic::blockade::ModeratorRectificationRequesterFactory

Public Functions

virtual std::unique_ptr<RectificationRequester> make(Rectifier rectifier, ParticipantId partici-
pant_id) = 0

Create a RectificationRequester to be held by a Participant

Parameters

• [in] rectifier: This rectifier can be used by the RectificationRequester to ask the partici-
pant to check its status.

• [in] participant_id: The ID of the participant that will hold onto this RectificationRe-
quester. This is the same participant that the rectifier will request for checks.

virtual ~RectificationRequesterFactory() = default

Class Rectifier

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Rectifier.hpp

Class Documentation

class rmf_traffic::blockade::Rectifier
The Rectifier class provides an interface for telling a Participant to rectify an inconsistency in the information
received by a moderator. This rectification protocol is important when the blockades are being managed over an
unreliable network.

The Rectifier class can be used by a RectifierRequester to ask a participant to retransmit a range of its past status
changes.

Only the Participant class is able to create a Rectifier instance. Users of rmf_traffic cannot instantiate a Rectifier.

108 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

void check(const Status &status)
Check that the given status is up to date, and retransmit if any information is out of sync.

void check()
Check that there should not be a status for this participant. If that is a mistake and this participant should
have a status, then retransmit the necessary information.

Class Writer

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Writer.hpp

Nested Relationships

Nested Types

• Struct Writer::Checkpoint

• Struct Writer::Reservation

Inheritance Relationships

Derived Type

• public rmf_traffic::blockade::Moderator (Class Moderator)

Class Documentation

class rmf_traffic::blockade::Writer
Subclassed by rmf_traffic::blockade::Moderator

Public Functions

virtual void set(ParticipantId participant_id, ReservationId reservation_id, const Reservation
&reservation) = 0

Set the path reservation of a participant.

If reservation_id is (modularly) less than or equal to the last reservation_id value given for this partici-
pant_id, then this function call will be ignored.

Any previous path reservation will be considered canceled.

virtual void ready(ParticipantId participant_id, ReservationId reservation_id, CheckpointId check-
point) = 0

Indicate when a participant is ready at a checkpoint.

If reservation_id is not equal to the last reservation_id value given to set() for this participant_id, then this
function call will be ignored.

1.2. Full API 109

rmf_traffic, Release 1.0.0

virtual void release(ParticipantId participant_id, ReservationId reservation_id, CheckpointId
checkpoint) = 0

Release a checkpoint (and all checkpoints that come after it) from ready status if the participant has not
departed from it yet.

virtual void reached(ParticipantId participant_id, ReservationId reservation_id, CheckpointId
checkpoint) = 0

Indicate when a participant has reached a checkpoint.

If reservation_id is not equal to the last reservation_id value given to set() for this participant_id, then this
function call will be ignored.

virtual void cancel(ParticipantId participant_id, ReservationId reservation_id) = 0
Indicate that a path reservation is canceled if reservation_id is (modularly) greater than or equal to the last
reservation_id value given to set() for this participant_id.

virtual void cancel(ParticipantId participant_id) = 0
Indicate that all path reservations for this participant_id are canceled.

virtual ~Writer() = default

struct Checkpoint

Public Members

Eigen::Vector2d position

std::string map_name

bool can_hold

struct Reservation

Public Members

std::vector<Checkpoint> path

double radius

Class Plumber

• Defined in file_latest_rmf_traffic_include_rmf_traffic_debug_Plumber.hpp

Class Documentation

class rmf_traffic::debug::Plumber

110 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

Plumber(std::string name)

~Plumber()

Class DependsOnPlan

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Route.hpp

Nested Relationships

Nested Types

• Struct DependsOnPlan::Dependency

Class Documentation

class rmf_traffic::DependsOnPlan
Express a dependency on the plan of another traffic participant.

Public Functions

DependsOnPlan()
Default constructor. There will be no dependency.

DependsOnPlan(PlanId plan, DependsOnRoute routes)
There will be a dependency on the specified plan.

DependsOnPlan &plan(std::optional<PlanId> plan)
Set the plan that there is a dependency on.

std::optional<PlanId> plan() const
Get the plan that there is a dependency on.

DependsOnPlan &routes(DependsOnRoute routes)
Set the routes that there is a dependency on.

DependsOnRoute &routes()
Get the routes that there is a dependency on.

const DependsOnRoute &routes() const
Get the routes that there is a dependency on.

DependsOnPlan &add_dependency(CheckpointId dependent_checkpoint, Dependency dependency)
Add a dependency.

struct Dependency

1.2. Full API 111

rmf_traffic, Release 1.0.0

Public Members

RouteId on_route

CheckpointId on_checkpoint

Template Class bidirectional_iterator

• Defined in file_latest_rmf_traffic_include_rmf_traffic_detail_bidirectional_iterator.hpp

Class Documentation

template<typename ElementType, typename ImplementationType, typename Friend>
class rmf_traffic::detail::bidirectional_iterator

This class is used so we can provide iterators for various container classes without exposing any implementation
details about what kind of STL container we are using inside of our container class. This allows us to guarantee
ABI stability, even if we decide to change what STL container we use inside of our implementation.

This class is designed to offer only the most basic features of a bidirectional iterator.

Public Types

using Element = ElementType

using Implementation = ImplementationType

Public Functions

Element &operator*() const
Dereference operator.

Element *operator->() const
Drill-down operator.

bidirectional_iterator &operator++()
Pre-increment operator: ++it

Note This is more efficient than the post-increment operator.

Return a reference to the iterator that was operated on

bidirectional_iterator &operator--()
Pre-decrement operator: it

Note This is more efficient than the post-decrement operator

Return a reference to the iterator that was operated on

bidirectional_iterator operator++(int)
Post-increment operator: it++

Return a copy of the iterator before it was incremented

112 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

bidirectional_iterator operator--(int)
Post-decrement operator: it

Return a copy of the iterator before it was decremented

bool operator==(const bidirectional_iterator &other) const
Equality comparison operator.

bool operator!=(const bidirectional_iterator &other) const
Inequality comparison operator.

operator bidirectional_iterator<const Element, Implementation, Friend>()
const

bidirectional_iterator(const bidirectional_iterator&) = default

bidirectional_iterator(bidirectional_iterator&&) = default

bidirectional_iterator &operator=(const bidirectional_iterator&) = default

bidirectional_iterator &operator=(bidirectional_iterator&&) = default

bidirectional_iterator()

Template Class forward_iterator

• Defined in file_latest_rmf_traffic_include_rmf_traffic_detail_forward_iterator.hpp

Class Documentation

template<typename ElementType, typename ImplementationType, typename Friend>
class rmf_traffic::detail::forward_iterator

This class is used so we can provide iterators for various container classes without exposing any implementation
details about what kind of STL container we are using inside of our container class. This allows us to guarantee
ABI stability, even if we decide to change what STL container we use inside of our implementation.

This class is designed to offer only the most basic features of a forward iterator.

Public Types

using Element = ElementType

using Implementation = ImplementationType

Public Functions

Element &operator*() const
Dereference operator.

Element *operator->() const
Drill-down operator.

forward_iterator &operator++()
Pre-increment operator: ++it

1.2. Full API 113

rmf_traffic, Release 1.0.0

Note This is more efficient than the post-increment operator.

Return a reference to the iterator that was operated on

forward_iterator operator++(int)
Post-increment operator: it++

Return a copy of the iterator before it was incremented

bool operator==(const forward_iterator &other) const
Equality comparison operator.

bool operator!=(const forward_iterator &other) const
Inequality comparison operator.

operator forward_iterator<const Element, Implementation, Friend>()
const

forward_iterator(const forward_iterator&) = default

forward_iterator(forward_iterator&&) = default

forward_iterator &operator=(const forward_iterator&) = default

forward_iterator &operator=(forward_iterator&&) = default

forward_iterator()

Class DetectConflict

• Defined in file_latest_rmf_traffic_include_rmf_traffic_DetectConflict.hpp

Nested Relationships

Nested Types

• Struct DetectConflict::Conflict

Class Documentation

class rmf_traffic::DetectConflict

Public Types

enum Interpolate
Values:

enumerator CubicSpline

114 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Static Functions

static std::optional<Conflict> between(const Profile &profile_a, const Trajectory &tra-
jectory_a, const DependsOnCheckpoint *dependen-
cies_of_a_on_b, const Profile &profile_b, const
Trajectory &trajectory_b, const DependsOnCheckpoint
*dependencies_of_b_on_a, Interpolate interpolation =
Interpolate::CubicSpline)

Checks if there are any conflicts between the two trajectories.

Return true if a conflict exists between the trajectories, false otherwise.

Parameters

• [in] profile_a: The profile of agent A

• [in] trajectory_a: The trajectory of agent A

• [in] dependencies_of_a_on_b: The dependencies that agent A has on the given trajec-
tory of agent B

• [in] profile_b: The profile of agent B

• [in] trajectory_b: The trajectory of agent B

• [in] dependencies_of_b_on_a: The dependencies that agent B has on the given trajec-
tory of agent A

struct Conflict

Public Members

Trajectory::const_iterator a_it

Trajectory::const_iterator b_it

Time time

Class Circle

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_Circle.hpp

Inheritance Relationships

Base Type

• public rmf_traffic::geometry::ConvexShape (Class ConvexShape)

1.2. Full API 115

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::geometry::Circle : public rmf_traffic::geometry::ConvexShape
This class represent a circle shape which can be added into a Zone or Trajectory.

Public Functions

Circle(double radius)

Circle(const Circle &other)

Circle &operator=(const Circle &other)

void set_radius(double r)

double get_radius() const

virtual FinalShape finalize() const final
Finalize the shape so that it can be given to a Trajectory::Profile or a Zone.

virtual FinalConvexShape finalize_convex() const final
Finalize the shape more specifically as a ConvexShape.

Class ConvexShape

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_ConvexShape.hpp

Inheritance Relationships

Base Type

• public rmf_traffic::geometry::Shape (Class Shape)

Derived Type

• public rmf_traffic::geometry::Circle (Class Circle)

Class Documentation

class rmf_traffic::geometry::ConvexShape : public rmf_traffic::geometry::Shape
This class is a more specific type of Shape. The Zone class can consume any kind of Shape, but the Trajectory
class can only consume ConvexShape types.

See Box, Circle

Subclassed by rmf_traffic::geometry::Circle

116 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

virtual FinalConvexShape finalize_convex() const = 0
Finalize the shape more specifically as a ConvexShape.

Protected Functions

ConvexShape(std::unique_ptr<Shape::Internal> internal)

Class FinalConvexShape

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_ConvexShape.hpp

Inheritance Relationships

Base Type

• public rmf_traffic::geometry::FinalShape (Class FinalShape)

Class Documentation

class rmf_traffic::geometry::FinalConvexShape : public rmf_traffic::geometry::FinalShape
This is a finalized ConvexShape whose parameters can no longer be mutated.

Protected Functions

FinalConvexShape()

Class FinalShape

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_Shape.hpp

Inheritance Relationships

Derived Type

• public rmf_traffic::geometry::FinalConvexShape (Class FinalConvexShape)

1.2. Full API 117

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::geometry::FinalShape
This is a finalized shape whose parameters can no longer be mutated.

Subclassed by rmf_traffic::geometry::FinalConvexShape

Public Functions

const Shape &source() const
Look at the source of this FinalShape to inspect its parameters.

double get_characteristic_length() const
Get the characteristic length of this FinalShape.

virtual ~FinalShape() = default

bool operator==(const FinalShape &other) const
Equality operator.

bool operator!=(const FinalShape &other) const
Non-equality operator.

Protected Functions

FinalShape()

Protected Attributes

rmf_utils::impl_ptr<Implementation> _pimpl

Class Shape

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_Shape.hpp

Inheritance Relationships

Derived Type

• public rmf_traffic::geometry::ConvexShape (Class ConvexShape)

Class Documentation

class rmf_traffic::geometry::Shape
This is the base class of different shape classes that can be used by the rmf_traffic library. This cannot (currently)
be extended by downstream libraries; instead, users must choose one of the pre-defined shape types belonging
to this library.

See Box, Circle, Polygon

Subclassed by rmf_traffic::geometry::ConvexShape

118 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

virtual FinalShape finalize() const = 0
Finalize the shape so that it can be given to a Trajectory::Profile or a Zone.

Shape(Shape&&) = delete

Shape &operator=(Shape&&) = delete

virtual ~Shape()

Protected Functions

Internal *_get_internal()

const Internal *_get_internal() const

Shape(std::unique_ptr<Internal> internal)

Class Space

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_Space.hpp

Class Documentation

class rmf_traffic::geometry::Space

Public Functions

Space(geometry::ConstFinalShapePtr shape, Eigen::Isometry2d tf)

const geometry::ConstFinalShapePtr &get_shape() const

Space &set_shape(geometry::ConstFinalShapePtr shape)

const Eigen::Isometry2d &get_pose() const

Space &set_pose(Eigen::Isometry2d tf)

Class invalid_trajectory_error

• Defined in file_latest_rmf_traffic_include_rmf_traffic_DetectConflict.hpp

Inheritance Relationships

Base Type

• public exception

1.2. Full API 119

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::invalid_trajectory_error : public exception

Public Functions

const char *what() const noexcept override

Class Motion

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Motion.hpp

Class Documentation

class rmf_traffic::Motion
Pure abstract interface for describing a continuous motion.

Public Functions

virtual Time start_time() const = 0
Get the lower bound on the time range where this motion is valid.

virtual Time finish_time() const = 0
Get the upper bound on the time range where this motion is valid.

virtual Eigen::Vector3d compute_position(Time t) const = 0
Get the position of this motion at a point in time.

Parameters

• [in] t: The time of interest. This time must be in the range [start_time(), finish_time()], or else
the output is undefined and may result in an exception.

virtual Eigen::Vector3d compute_velocity(Time t) const = 0
Get the velocity of this motion at a point in time.

Parameters

• [in] t: The time of interest. This time must be in the range [start_time(), finish_time()], or else
the output is undefined and may result in an exception.

virtual Eigen::Vector3d compute_acceleration(Time t) const = 0
Get the acceleration of this motion at a point in time.

Parameters

• [in] t: The time of interest. This time must be in the range [start_time(), finish_time()], or else
the output is undefined and may result in an exception.

virtual ~Motion() = default

120 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Static Functions

static std::unique_ptr<Motion> compute_cubic_splines(const Trajectory::const_iterator
&begin, const Trajec-
tory::const_iterator &end)

Compute a piecewise cubic spline motion object for a Trajectory from the begin iterator up to (but not
including) the end iterator.

Parameters

• [in] begin: The iterator of the first waypoint to include in the motion. It is undefined behavior
to pass in Trajectory::end() for this argument.

• [in] end: The iterator of the first waypoint to exclude from the motion. To include all the way
to the end of the trajectory, pass in Trajectory::end(). An exception will be thrown if begin ==
end.

static std::unique_ptr<Motion> compute_cubic_splines(const Trajectory &trajectory)
Compute a piecewise cubic spline motion object for an entire Trajectory.

Class Profile

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Profile.hpp

Class Documentation

class rmf_traffic::Profile

Public Functions

Profile(geometry::ConstFinalConvexShapePtr footprint, geometry::ConstFinalConvexShapePtr
vicinity = nullptr)

Constructor

Parameters

• [in] footprint: An estimate of the space that this participant occupies.

• [in] vicinity: An estimate of the vicinity around the participant in which the presence of
other traffic would disrupt its operations. If a nullptr is used for this, the footprint shape will be
used as the vicinity.

bool operator==(const Profile &rhs) const
Equality operator.

Profile &footprint(geometry::ConstFinalConvexShapePtr shape)
Set the footprint of the participant.

const geometry::ConstFinalConvexShapePtr &footprint() const
Get the footprint of the participant.

Profile &vicinity(geometry::ConstFinalConvexShapePtr shape)
Set the vicinity of this participant.

1.2. Full API 121

rmf_traffic, Release 1.0.0

const geometry::ConstFinalConvexShapePtr &vicinity() const
Get the vicinity of this participant.

Class Region

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Region.hpp

Class Documentation

class rmf_traffic::Region
A class to describe a region within spacetime.

This specifies the map whose coordinates should be used, a lower and upper bound to define a time range, and
a set of geometry::Space objects to define regions with space.

For the geometry::Space objects, this class acts like an STL container and provides an iterator interface to
specify, access, and modify them.

Public Types

using Space = geometry::Space

using base_iterator = rmf_traffic::detail::bidirectional_iterator<E, I, F>

using iterator = base_iterator<Space, IterImpl, Region>

using const_iterator = base_iterator<const Space, IterImpl, Region>

Public Functions

Region(std::string map, Time lower_bound, Time upper_bound, std::vector<Space> spaces)
Construct a region given the parameters.

Parameters

• [in] map: The map whose coordinates will be used to define the regions in space.

• [in] lower_bound: The lower bound for the time range.

• [in] upper_bound: The upper bound for the time range.

• [in] spaces: A vector of geometry::Space objects to define the desired regions in space.

Region(std::string map, std::vector<Space> spaces)
Construct a region with no time constraints.

Parameters

• [in] map: The map whose coordinates will be used to define the regions in space.

• [in] spaces: A vector of geometry::Space objects to define the desired regions in space.

const std::string &get_map() const
Get the name of the map that this Spacetime refers to.

122 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Region &set_map(std::string map)
Set the name of the map that this Spacetime refers to.

const Time *get_lower_time_bound() const
Get the lower bound for the time range.

If there is no lower bound for the time range, then this returns a nullptr.

Region &set_lower_time_bound(Time time)
Set the lower bound for the time range.

Region &remove_lower_time_bound()
Remove the lower bound for the time range.

const Time *get_upper_time_bound() const
Get the upper bound for the time range.

If there is no upper bound for the time range, then this returns a nullptr.

Region &set_upper_time_bound(Time time)
Set the upper bound for the time range.

Region &remove_upper_time_bound()
Remove the upper bound for the time range.

void push_back(Space space)
Add a region of space.

void pop_back()
Remove the last region of space that was added.

iterator erase(iterator it)
Erase a specific region of space based on its iterator.

iterator erase(iterator first, iterator last)
Erase a specific sets of regions of space based on their iterators.

iterator begin()
Get the beginning iterator for the regions of space.

const_iterator begin() const
const-qualified begin()

const_iterator cbegin() const
Explicitly const-qualified alternative for begin()

iterator end()
Get the one-past-the-end iterator for the regions of space.

const_iterator end() const
const-qualified end()

const_iterator cend() const
Explicitly const-qualified alternative for end()

std::size_t num_spaces() const
Get the number of Space regions in this Spacetime region.

1.2. Full API 123

rmf_traffic, Release 1.0.0

Class Route

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Route.hpp

Class Documentation

class rmf_traffic::Route
A route on the schedule. This is used as a component of a schedule participant’s itinerary.

Public Functions

Route(std::string map, Trajectory trajectory)
Constructor

Parameters

• [in] map: The map that the trajectory is on

• [in] trajectory: The scheduled trajectory

Route &map(std::string value)
Set the map for this route.

const std::string &map() const
Get the map for this route.

Route &trajectory(Trajectory value)
Set the trajectory for this route.

Trajectory &trajectory()
Get the trajectory for this route.

const Trajectory &trajectory() const
Get the trajectory for this immutable route.

Route &checkpoints(std::set<uint64_t> value)
Set the checkpoints for this route. A checkpoint is a waypoint within this route which will explicitly trigger
an traffic event update when it is reached.

std::set<uint64_t> &checkpoints()
Get the checkpoints for this route.

const std::set<uint64_t> &checkpoints() const
Get the checkpoints for this immutable route.

Route &dependencies(DependsOnParticipant value)
Set the dependencies of the route.

DependsOnParticipant &dependencies()
Get the dependencies of the route.

const DependsOnParticipant &dependencies() const
Get the dependencies of the immutable route.

Route &add_dependency(CheckpointId dependent_checkpoint, Dependency dependency)
Tell this route that it has a dependency on the checkpoint of another participant’s route.

124 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Parameters

• [in] dependent_checkpoint: The checkpoint inside of this route which has a depen-
dency on the other participant’s route.

• [in] on_participant: The other participant which this route is depending on.

• [in] on_plan: The ID of the other participant’s plan that this route is depending on.

• [in] on_route: The ID of the other participant’s route that this robot is depending on.

• [in] on_checkpoint: The ID of the checkpoint

bool should_ignore(ParticipantId participant, PlanId plan) const
True if this route should ignore information about the given (participant, plan) pair. If this route has a
dependency on a plan from this participant with a higher ID value, then this will return true. Otherwise it
returns false.

const DependsOnCheckpoint *check_dependencies(ParticipantId on_participant, PlanId
on_plan, RouteId on_route) const

Get any dependencies that this route has on the given route of another participant.

Return A pointer to the relevant dependencies, if any exist. If there is no dependency relevant to the
specified route of the participant, then this will be a nullptr.

Parameters

• [in] on_participant: The ID of the other participant of interest

• [in] on_plan: The ID of the other participant’s current plan

• [in] on_route: The ID of the other participant’s route that is being considered

Class Change

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Change.hpp

Nested Relationships

Nested Types

• Class Change::Add

• Struct Add::Item

• Class Change::Cull

• Class Change::Delay

• Class Change::Erase

• Class Change::Progress

• Class Change::RegisterParticipant

• Class Change::UnregisterParticipant

• Class Change::UpdateParticipantInfo

1.2. Full API 125

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::schedule::Change
A class that describes a change within the schedule.

class Add
The API for an Add change.

Public Functions

Add(PlanId plan, std::vector<Item> additions)
Add a set of routes.

const std::vector<Item> &items() const
A reference to the Trajectory that was inserted.

PlanId plan_id() const
The plan ID that these routes are being added for.

struct Item
A description of an addition.

Public Members

RouteId route_id
The ID of the route being added, relative to the plan it belongs to.

StorageId storage_id
The storage ID of the route.

ConstRoutePtr route
The information for the route being added.

class Cull
A class that describes a culling.

Public Functions

Cull(Time time)
Constructor

Parameters
• [in] time: The time before which all routes should be culled

Time time() const

class Delay
The API for a Delay change.

126 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

Delay(Duration duration)
Add a delay

Parameters
• [in] duration: The duration of that delay.

Duration duration() const
The duration of the delay.

class Erase
A class that describes an erasing change.

Public Functions

Erase(std::vector<StorageId> ids)
Constructor

Parameters
• [in] id: The ID of the route that should be erased

const std::vector<StorageId> &ids() const

class Progress
A class that provides an update on itinerary progression.

Public Functions

Progress(ProgressVersion version, std::vector<CheckpointId> checkpoints)
Constructor.

ProgressVersion version() const

const std::vector<CheckpointId> &checkpoints() const

class RegisterParticipant
A class that describes a participant registration.

Public Functions

RegisterParticipant(ParticipantId id, ParticipantDescription description)
Constructor

Parameters
• [in] id: The ID of the participant
• [in] description: The description of the participant

ParticipantId id() const
The ID for the participant.

const ParticipantDescription &description() const
The description of the participant.

1.2. Full API 127

rmf_traffic, Release 1.0.0

class UnregisterParticipant
A class that specifies a participant to unregister.

Public Functions

UnregisterParticipant(ParticipantId id)
Constructor

Parameters
• [in] id: The ID of the participant that is being unregistered.

ParticipantId id() const
The ID for the participant.

class UpdateParticipantInfo
A class that describes update in the participant info.

Public Functions

UpdateParticipantInfo(ParticipantId id, ParticipantDescription desc)
Constructor

Parameters
• [in] id: The ID of the participant that is being unregistered.

ParticipantId id() const
The ID for the participant.

ParticipantDescription description() const
Description for participants.

Class Change::Add

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Change.hpp

Nested Relationships

This class is a nested type of Class Change.

Nested Types

• Struct Add::Item

128 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::schedule::Change::Add
The API for an Add change.

Public Functions

Add(PlanId plan, std::vector<Item> additions)
Add a set of routes.

const std::vector<Item> &items() const
A reference to the Trajectory that was inserted.

PlanId plan_id() const
The plan ID that these routes are being added for.

struct Item
A description of an addition.

Public Members

RouteId route_id
The ID of the route being added, relative to the plan it belongs to.

StorageId storage_id
The storage ID of the route.

ConstRoutePtr route
The information for the route being added.

Class Change::Cull

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Change.hpp

Nested Relationships

This class is a nested type of Class Change.

Class Documentation

class rmf_traffic::schedule::Change::Cull
A class that describes a culling.

1.2. Full API 129

rmf_traffic, Release 1.0.0

Public Functions

Cull(Time time)
Constructor

Parameters

• [in] time: The time before which all routes should be culled

Time time() const

Class Change::Delay

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Change.hpp

Nested Relationships

This class is a nested type of Class Change.

Class Documentation

class rmf_traffic::schedule::Change::Delay
The API for a Delay change.

Public Functions

Delay(Duration duration)
Add a delay

Parameters

• [in] duration: The duration of that delay.

Duration duration() const
The duration of the delay.

Class Change::Erase

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Change.hpp

130 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Nested Relationships

This class is a nested type of Class Change.

Class Documentation

class rmf_traffic::schedule::Change::Erase
A class that describes an erasing change.

Public Functions

Erase(std::vector<StorageId> ids)
Constructor

Parameters

• [in] id: The ID of the route that should be erased

const std::vector<StorageId> &ids() const

Class Change::Progress

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Change.hpp

Nested Relationships

This class is a nested type of Class Change.

Class Documentation

class rmf_traffic::schedule::Change::Progress
A class that provides an update on itinerary progression.

Public Functions

Progress(ProgressVersion version, std::vector<CheckpointId> checkpoints)
Constructor.

ProgressVersion version() const

const std::vector<CheckpointId> &checkpoints() const

1.2. Full API 131

rmf_traffic, Release 1.0.0

Class Change::RegisterParticipant

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Change.hpp

Nested Relationships

This class is a nested type of Class Change.

Class Documentation

class rmf_traffic::schedule::Change::RegisterParticipant
A class that describes a participant registration.

Public Functions

RegisterParticipant(ParticipantId id, ParticipantDescription description)
Constructor

Parameters

• [in] id: The ID of the participant

• [in] description: The description of the participant

ParticipantId id() const
The ID for the participant.

const ParticipantDescription &description() const
The description of the participant.

Class Change::UnregisterParticipant

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Change.hpp

Nested Relationships

This class is a nested type of Class Change.

Class Documentation

class rmf_traffic::schedule::Change::UnregisterParticipant
A class that specifies a participant to unregister.

132 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

UnregisterParticipant(ParticipantId id)
Constructor

Parameters

• [in] id: The ID of the participant that is being unregistered.

ParticipantId id() const
The ID for the participant.

Class Change::UpdateParticipantInfo

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Change.hpp

Nested Relationships

This class is a nested type of Class Change.

Class Documentation

class rmf_traffic::schedule::Change::UpdateParticipantInfo
A class that describes update in the participant info.

Public Functions

UpdateParticipantInfo(ParticipantId id, ParticipantDescription desc)
Constructor

Parameters

• [in] id: The ID of the participant that is being unregistered.

ParticipantId id() const
The ID for the participant.

ParticipantDescription description() const
Description for participants.

Class Database

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Database.hpp

1.2. Full API 133

rmf_traffic, Release 1.0.0

Inheritance Relationships

Base Types

• public rmf_traffic::schedule::ItineraryViewer (Class ItineraryViewer)

• public rmf_traffic::schedule::Writer (Class Writer)

• public rmf_traffic::schedule::Snappable (Class Snappable)

Class Documentation

class rmf_traffic::schedule::Database : public rmf_traffic::schedule::ItineraryViewer, public rmf_traffic::schedule::Writer, public rmf_traffic::schedule::Snappable
A class that maintains a database of scheduled Trajectories. This class is intended to be used only for the
canonical RMF traffic schedule database.

The Viewer API can be queried to find Trajectories that match certain criteria.

You can also retrieve update patches from a database. To apply those patches to a downstream Viewer, it is
strongly advised to use the rmf_traffic::schedule::Mirror class.

Public Functions

virtual void set(ParticipantId participant, PlanId plan, const Itinerary &itinerary, StorageId stor-
age_base, ItineraryVersion version) final

Set a brand new itinerary for a participant. This will replace any itinerary that is already in the schedule
for the participant.

Parameters

• [in] participant: The ID of the participant whose itinerary is being updated.

• [in] plan: The ID of the plan that this new itinerary belongs to.

• [in] itinerary: The new itinerary of the participant.

• [in] storage_base: The storage index offset that the database should use for this plan.
This should generally be the integer number of total routes that the participant has ever given to
the writer prior to setting this new itinerary. This value helps ensure consistent unique IDs for
every route, even after a database has failed over or restarted.

• [in] version: The version for this itinerary change.

virtual void extend(ParticipantId participant, const Itinerary &routes, ItineraryVersion version)
final

Add a set of routes to the itinerary of this participant.

Parameters

• [in] participant: The ID of the participant whose itinerary is being updated.

• [in] routes: The set of routes that should be added to the itinerary.

• [in] version: The version for this itinerary change

134 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

virtual void delay(ParticipantId participant, Duration delay, ItineraryVersion version) final
Add a delay to the itinerary from the specified Time.

Nothing about the routes in the itinerary will be changed except that waypoints will shifted through time.

Parameters

• [in] participant: The ID of the participant whose itinerary is being delayed.

• [in] delay: This is the duration of time to delay all qualifying Trajectory Waypoints.

• [in] version: The version for this itinerary change

virtual void reached(ParticipantId participant, PlanId plan, const std::vector<CheckpointId>
&reached_checkpoints, ProgressVersion version) final

Indicate that a participant has reached certain checkpoints.

Parameters

• [in] participant: The ID of the participant whose progress is being set.

• [in] plan: The ID of the plan which progress has been made for.

• [in] reached_checkpoints: The set of checkpoints that have been reached. The indices
in the vector must correspond to the RouteIds of the plan.

• [in] version: The version number for this progress.

virtual void clear(ParticipantId participant, ItineraryVersion version) final
Erase an itinerary from this database.

Parameters

• [in] participant: The ID of the participant whose itinerary is being erased.

• [in] version: The version for this itinerary change

virtual Registration register_participant(ParticipantDescription participant_info) final
Register a new participant.

Return result of registering the new participant.

Parameters

• [in] participant_info: Information about the new participant.

• [in] time: The time at which the registration is being requested.

virtual void update_description(ParticipantId participant, ParticipantDescription desc)
final

Updates a participants footprint

Parameters

• [in] participant: The ID of the participant to update

• [in] desc: The participant description

1.2. Full API 135

rmf_traffic, Release 1.0.0

virtual void unregister_participant(ParticipantId participant) final
Before calling this function on a Database, you should set the current time for the database by calling
set_current_time(). This will allow the database to cull this participant after a reasonable amount of time
has passed.

virtual View query(const Query ¶meters) const final
Query this Viewer to get a View of the Trajectories inside of it that match the Query parameters.

virtual View query(const Query::Spacetime &spacetime, const Query::Participants &partici-
pants) const final

Alternative signature for query()

virtual const std::unordered_set<ParticipantId> &participant_ids() const final
Get the set of active participant IDs.

std::shared_ptr<const ParticipantDescription> get_participant(std::size_t participant_id)
const final

virtual Version latest_version() const final
Get the latest version number of this Database.

std::optional<ItineraryView> get_itinerary(std::size_t participant_id) const final

std::optional<PlanId> get_current_plan_id(std::size_t participant_id) const final

virtual const std::vector<CheckpointId> *get_current_progress(ParticipantId partici-
pant_id) const final

Get the current progress of a specific participant. If a participant with the specified ID is not registered
with the schedule or has never made progress, then this will return a nullptr.

virtual ProgressVersion get_current_progress_version(ParticipantId participant_id)
const final

Get the current known progress of a specific participant along its current plan. If no progress has been
made, this will have a value of 0.

virtual DependencySubscription watch_dependency(Dependency dependency,
std::function<void)

> on_reachedstd::function<void> on_deprecated const finalWatch a traffic dependency. When a rel-
evant event happens for the dependency, the on_reached or on_deprecated will be triggered. If the event
had already come to pass before this function is called, then the relevant callback will be triggered right
away, within the scope of this function.

Only one of the callbacks will ever be triggered, and it will only be triggered at most once.

Return an object that maintains the dependency for the viewer.

Parameters

• [in] on_reached: If the dependency is reached, this will be triggered. on_changed will
never be triggered afterwards.

• [in] on_deprecated: If the plan of the participant changed before it reached this depen-
dency then the dependency is deprecated and this callback will be triggered. on_reached will
never be triggered afterwards.

virtual std::shared_ptr<const Snapshot> snapshot() const final
Get a snapshot of the schedule.

Database()
Initialize a Database.

136 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

const Inconsistencies &inconsistencies() const
A description of all inconsistencies currently present in the database. Inconsistencies are isolated between
Participants.

To fix the inconsistency, the Participant should resend every Itinerary change that was missing from every
range, or else send a change that nullifies all previous changes, such as a set(~) or erase(ParticipantId).

Patch changes(const Query ¶meters, std::optional<Version> after) const
Get the changes in this Database that match the given Query parameters. If a version number is specified,
then the returned Patch will reflect the changes that occurred from the specified version to the current
version of the schedule.

To get a consistent reflection of the schedule when specifying a base version, it is important that the query
parameters are not changed in between calls.

Return A Patch of schedule changes that are relevant to the specified query parameters.

Parameters

• [in] parameters: The parameters describing what types of schedule entries the mirror cares
about.

• [in] after: Specify that only changes which come after this version number are desired. If
you give a nullopt for this argument, then all changes will be provided.

View query(const Query ¶meters, Version after) const
View the routes that match the parameters and have changed (been added or delayed) since the specified
version. This is useful for viewing incremental changes.

Return a view of the routes that are different since the specified version.

Parameters

• [in] parameters: The parameters describing what types of schedule entries are relevant.

• [in] after: Specify that only routes which changed after this version number are desired.

Version cull(Time time)
Throw away all itineraries up to the specified time.

Return The new version of the schedule database. If nothing was culled, this version number will remain
the same.

Parameters

• [in] time: All Trajectories that finish before this time will be culled from the Database. Their
data will be completely deleted from this Database object.

void set_current_time(Time time)
Set the current time on the database. This should be used immediately before calling unregis-
ter_participant() so that the database can cull the existence of the participant at an appropriate time.
There’s no need to call this function for any other purpose.

ItineraryVersion itinerary_version(ParticipantId participant) const
Get the current itinerary version for the specified participant.

PlanId latest_plan_id(ParticipantId participant) const
Get the last Plan ID used by this participant.

1.2. Full API 137

rmf_traffic, Release 1.0.0

This provides the same information as get_current_plan_id, except it throws an exception instead of re-
turning an optional if the participant does not exist.

StorageId next_storage_base(ParticipantId participant) const
Get the last Storage ID used by this participant.

Class DatabaseRectificationRequesterFactory

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Rectifier.hpp

Inheritance Relationships

Base Type

• public rmf_traffic::schedule::RectificationRequesterFactory (Class Rectification-
RequesterFactory)

Class Documentation

class rmf_traffic::schedule::DatabaseRectificationRequesterFactory : public rmf_traffic::schedule::RectificationRequesterFactory
This class provides a simple implementation of a RectificationRequesterFactory that just hooks directly into
a Database instance and issues rectification requests when told to based on the current inconsistencies in the
Database.

Public Functions

DatabaseRectificationRequesterFactory(std::shared_ptr<Database> database)
This accepts a const-reference to a Database instance. Note that this class will store a reference to this
Database, so its lifecycle is implicitly dependent on the Database’s lifecycle.

virtual std::unique_ptr<RectificationRequester> make(Rectifier rectifier, ParticipantId partici-
pant_id) final

Create a RectificationRequester to be held by a Participant

Parameters

• [in] rectifier: This rectifier can be used by the RectificationRequester to ask the partici-
pant to retransmit some of its changes.

• [in] participant_id: The ID of the participant that will hold onto this RectificationRe-
quester. This is the same participant that the rectifier will request retransmissions to.

void rectify()
Call this function to instruct all the RectificationRequestors produced by this factory to perform their
rectifications.

void change_database(std::shared_ptr<Database> new_database)
Change the database that will be getting rectified. This can be used to switch to rectifying a new database
fork.

138 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Class Inconsistencies

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Inconsistencies.hpp

Nested Relationships

Nested Types

• Struct Inconsistencies::Element

• Class Inconsistencies::Ranges

• Struct Ranges::Range

Class Documentation

class rmf_traffic::schedule::Inconsistencies
An Inconsistency occurs when one or more ItineraryVersion values get skipped by the inputs into the database.
This container expresses the ranges of which ItineraryVersions were skipped for a single Participant.

Iterators

Public Types

using base_iter = rmf_traffic::detail::forward_iterator<E, I, F>

using const_iterator = base_iter<const Element, IterImpl, Inconsistencies>

Public Functions

const_iterator begin() const
Get the beginning iterator.

const_iterator cbegin() const
Explicitly const-qualified alternative for begin()

const_iterator end() const
Get the one-past-the-end iterator.

const_iterator cend() const
Explicitly const-qualified alternative for end()

const_iterator find(ParticipantId id) const
Get the iterator for this ParticipantId.

std::size_t size() const
Get the number of participants with inconsistencies.

struct Element
An element of the Inconsistencies container. This tells the ranges of inconsistencies that are present for
the specified Participant.

1.2. Full API 139

rmf_traffic, Release 1.0.0

Public Members

ParticipantId participant

Ranges ranges

class Ranges
A container of the ranges of inconsistencies for a single participant.

Public Types

using const_iterator = base_iter<const Range, IterImpl, Ranges>

Public Functions

const_iterator begin() const
Get the beginning iterator.

const_iterator cbegin() const
Explicitly const-qualified alternative for begin()

const_iterator end() const
Get the one-past-the-end iterator.

const_iterator cend() const
Explicitly const-qualified alternative for end()

std::size_t size() const
Get the number of ranges in this container.

ItineraryVersion last_known_version() const
Get the value of the last itinerary version that has been received.

struct Range
A single range of inconsistencies within a participant.

Every version between (and including) the lower and upper versions have not been received by the
Database.

Public Members

ItineraryVersion lower

ItineraryVersion upper

Class Inconsistencies::Ranges

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Inconsistencies.hpp

140 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Nested Relationships

This class is a nested type of Class Inconsistencies.

Nested Types

• Struct Ranges::Range

Class Documentation

class rmf_traffic::schedule::Inconsistencies::Ranges
A container of the ranges of inconsistencies for a single participant.

Public Types

using const_iterator = base_iter<const Range, IterImpl, Ranges>

Public Functions

const_iterator begin() const
Get the beginning iterator.

const_iterator cbegin() const
Explicitly const-qualified alternative for begin()

const_iterator end() const
Get the one-past-the-end iterator.

const_iterator cend() const
Explicitly const-qualified alternative for end()

std::size_t size() const
Get the number of ranges in this container.

ItineraryVersion last_known_version() const
Get the value of the last itinerary version that has been received.

struct Range
A single range of inconsistencies within a participant.

Every version between (and including) the lower and upper versions have not been received by the
Database.

Public Members

ItineraryVersion lower

ItineraryVersion upper

1.2. Full API 141

rmf_traffic, Release 1.0.0

Class ItineraryViewer

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Viewer.hpp

Nested Relationships

Nested Types

• Class ItineraryViewer::DependencySubscription

Inheritance Relationships

Base Type

• public rmf_traffic::schedule::Viewer (Class Viewer)

Derived Types

• public rmf_traffic::schedule::Database (Class Database)

• public rmf_traffic::schedule::Mirror (Class Mirror)

Class Documentation

class rmf_traffic::schedule::ItineraryViewer : public virtual rmf_traffic::schedule::Viewer
A pure abstract interface class that extends Viewer to allow users to explicitly request the itinerary of a specific
participant.

Note This interface class is separate from Viewer because it is not generally needed by the traffic planning or
negotiation systems, and the Snapshot class can perform better if it does not need to provide this function.

Subclassed by rmf_traffic::schedule::Database, rmf_traffic::schedule::Mirror

Public Functions

virtual std::optional<ItineraryView> get_itinerary(ParticipantId participant_id) const = 0
Get the itinerary of a specific participant if it is available. If a participant with the specified ID is not
registered with the schedule or has never submitted an itinerary, then this will return a nullopt.

virtual std::optional<PlanId> get_current_plan_id(ParticipantId participant_id) const = 0
Get the current plan ID of a specific participant if it is available. If a participant with the specified ID is
not registered with the schedule, then this will return a nullopt.

virtual const std::vector<CheckpointId> *get_current_progress(ParticipantId partic-
ipant_id) const =
0

Get the current progress of a specific participant. If a participant with the specified ID is not registered
with the schedule or has never made progress, then this will return a nullptr.

142 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

virtual ProgressVersion get_current_progress_version(ParticipantId participant_id)
const = 0

Get the current known progress of a specific participant along its current plan. If no progress has been
made, this will have a value of 0.

virtual DependencySubscription watch_dependency(Dependency dependency,
std::function<void)

> on_reachedstd::function<void> on_deprecated const = 0Watch a traffic dependency. When a relevant
event happens for the dependency, the on_reached or on_deprecated will be triggered. If the event had
already come to pass before this function is called, then the relevant callback will be triggered right away,
within the scope of this function.

Only one of the callbacks will ever be triggered, and it will only be triggered at most once.

Return an object that maintains the dependency for the viewer.

Parameters

• [in] on_reached: If the dependency is reached, this will be triggered. on_changed will
never be triggered afterwards.

• [in] on_deprecated: If the plan of the participant changed before it reached this depen-
dency then the dependency is deprecated and this callback will be triggered. on_reached will
never be triggered afterwards.

virtual ~ItineraryViewer() = default

class DependencySubscription
A handle for maintaining a dependency on the progress of an itinerary.

Public Functions

bool reached() const
The dependency was reached by the participant.

bool deprecated() const
The plan of the participant changed before it ever reached the dependency

bool finished() const
Equivalent to reached() || deprecated()

Dependency dependency() const
Check what dependency this is subscribed to.

Class ItineraryViewer::DependencySubscription

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Viewer.hpp

1.2. Full API 143

rmf_traffic, Release 1.0.0

Nested Relationships

This class is a nested type of Class ItineraryViewer.

Class Documentation

class rmf_traffic::schedule::ItineraryViewer::DependencySubscription
A handle for maintaining a dependency on the progress of an itinerary.

Public Functions

bool reached() const
The dependency was reached by the participant.

bool deprecated() const
The plan of the participant changed before it ever reached the dependency

bool finished() const
Equivalent to reached() || deprecated()

Dependency dependency() const
Check what dependency this is subscribed to.

Class Mirror

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Mirror.hpp

Inheritance Relationships

Base Types

• public rmf_traffic::schedule::ItineraryViewer (Class ItineraryViewer)

• public rmf_traffic::schedule::Snappable (Class Snappable)

Class Documentation

class rmf_traffic::schedule::Mirror : public rmf_traffic::schedule::ItineraryViewer, public rmf_traffic::schedule::Snappable
A class that maintains a mirror of a Database of scheduled Trajectories. This class is intended to provide a
cache of the scheduled Trajectories to processes or threads that do not contain the original upstream copy of the
rmf_traffic::schedule::Database.

The Mirror is designed to mirror a relevant subset of the schedule database.

144 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

virtual View query(const Query ¶meters) const final
Query this Viewer to get a View of the Trajectories inside of it that match the Query parameters.

virtual View query(const Query::Spacetime &spacetime, const Query::Participants &partici-
pants) const final

Alternative signature for query()

virtual const std::unordered_set<ParticipantId> &participant_ids() const final
Get the set of active participant IDs.

std::shared_ptr<const ParticipantDescription> get_participant(std::size_t participant_id)
const final

std::optional<ItineraryView> get_itinerary(std::size_t participant_id) const final

virtual Version latest_version() const final
Get the latest version number of this Database.

virtual std::optional<PlanId> get_current_plan_id(ParticipantId participant_id) const
final

Get the current plan ID of a specific participant if it is available. If a participant with the specified ID is
not registered with the schedule, then this will return a nullopt.

virtual const std::vector<CheckpointId> *get_current_progress(ParticipantId partici-
pant_id) const final

Get the current progress of a specific participant. If a participant with the specified ID is not registered
with the schedule or has never made progress, then this will return a nullptr.

virtual ProgressVersion get_current_progress_version(ParticipantId participant_id)
const final

Get the current known progress of a specific participant along its current plan. If no progress has been
made, this will have a value of 0.

virtual DependencySubscription watch_dependency(Dependency dependency,
std::function<void)

> on_reachedstd::function<void> on_deprecated const finalWatch a traffic dependency. When a rel-
evant event happens for the dependency, the on_reached or on_deprecated will be triggered. If the event
had already come to pass before this function is called, then the relevant callback will be triggered right
away, within the scope of this function.

Only one of the callbacks will ever be triggered, and it will only be triggered at most once.

Return an object that maintains the dependency for the viewer.

Parameters

• [in] on_reached: If the dependency is reached, this will be triggered. on_changed will
never be triggered afterwards.

• [in] on_deprecated: If the plan of the participant changed before it reached this depen-
dency then the dependency is deprecated and this callback will be triggered. on_reached will
never be triggered afterwards.

virtual std::shared_ptr<const Snapshot> snapshot() const final
Get a snapshot of the schedule.

Mirror()
Create a database mirror.

1.2. Full API 145

rmf_traffic, Release 1.0.0

void update_participants_info(const ParticipantDescriptionsMap &participants)
Update the known participants and their descriptions.

bool update(const Patch &patch)
Update this mirror.

Return true if this update is okay. false if the base version of the patch does not match

Database fork() const
Fork a new database off of this Mirror. The state of the new database will match the last state of the
upstream database that this Mirror knows about.

Class Negotiation

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Negotiation.hpp

Nested Relationships

Nested Types

• Class Negotiation::Evaluator

• Template Struct Negotiation::SearchResult

• Struct Negotiation::Submission

• Class Negotiation::Table

• Class Table::Viewer

• Class Viewer::Endpoint

• Struct Negotiation::VersionedKey

Class Documentation

class rmf_traffic::schedule::Negotiation

Public Types

enum SearchStatus
This enumeration describes the status of a search attempt.

Values:

enumerator Deprecated
The requested Table existed, but the requested version is out of date.

enumerator Absent
The requested version of this Table has never been seen by this Negotiation.

enumerator Found
The requested Table has been found.

using VersionedKeySequence = std::vector<VersionedKey>
The versioned key sequence can be used to select tables while demanding specific versions for those tables.

146 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

using Proposal = std::vector<Submission>

using Alternatives = std::vector<Itinerary>

using TablePtr = std::shared_ptr<Table>

using ConstTablePtr = std::shared_ptr<const Table>

Public Functions

const std::unordered_set<ParticipantId> &participants() const
Get the participants that are currently involved in this negotiation.

void add_participant(ParticipantId p)
Add a new participant to the negotiation. This participant will become involved in the negotiation, and
must give its consent for any agreement to be finalized.

bool ready() const
Returns true if at least one proposal is available that has the consent of every participant.

bool complete() const
Returns true if all possible proposals have been received and are ready to be evaluated.

Note that ready() may still be false if complete() is true, in the event that all proposals have been rejected.

TablePtr table(ParticipantId for_participant, const std::vector<ParticipantId> &to_accommodate)
Get a Negotiation::Table that provides a view into what participants are proposing.

This function does not care about table versioning.

See find()

Parameters

• [in] for_participant: The participant that is supposed to be viewing this Table. The
itineraries of this participant will be left off of the Table.

• [in] to_accommodate: The set of participants who are being accommodated at this Table.
The ordering of the participants in this set is hierarchical where each participant is accommodating
all of the participants that come before it.

ConstTablePtr table(ParticipantId for_participant, const std::vector<ParticipantId>
&to_accommodate) const

TablePtr table(const std::vector<ParticipantId> &sequence)
Get a Negotiation::Table that corresponds to the given participant sequence. For a table in terms of
for_participant and to_accomodate, you would call: table([to_accommodate. . . , for_participant])

This function does not care about table versioning.

See find()

Parameters

• [in] sequence: The participant sequence that corresponds to the desired table. This is equiv-
alent to [to_accommodate. . . , for_participant]

ConstTablePtr table(const std::vector<ParticipantId> &sequence) const

1.2. Full API 147

rmf_traffic, Release 1.0.0

SearchResult<TablePtr> find(ParticipantId for_participant, const VersionedKeySequence
&to_accommodate)

Find a table, requesting specific versions

See table()

SearchResult<ConstTablePtr> find(ParticipantId for_participant, const VersionedKeySequence
&to_accommodate) const

const-qualified find()

SearchResult<TablePtr> find(const VersionedKeySequence &sequence)
Find a table, requesting specific versions

See table()

SearchResult<ConstTablePtr> find(const VersionedKeySequence &sequence) const
const-qualified find()

ConstTablePtr evaluate(const Evaluator &evaluator) const
Evaluate the proposals that are available.

Return the negotiation table that was considered the best. Call Table::proposal() on this return value to
see the full proposal. If there was no

Public Static Functions

static rmf_utils::optional<Negotiation> make(std::shared_ptr<const Viewer> schedule_viewer,
std::vector<ParticipantId> participants)

Begin a negotiation.

Return a negotiation between the given participants. If the Viewer is missing a description of any of the
participants, then a nullopt will be returned instead.

See make_shared()

Parameters

• [in] viewer: A reference to the schedule viewer that represents the most up-to-date schedule.

• [in] participants: The participants who are involved in the schedule negotiation.

static std::shared_ptr<Negotiation> make_shared(std::shared_ptr<const Viewer> sched-
ule_viewer, std::vector<ParticipantId> partici-
pants)

Begin a negotiation.

Return a negotiation between the given participants. If the Viewer is missing a description of any of the
participants, then a nullptr will be returned instead.

See make()

Parameters

• [in] viewer: A reference to the schedule viewer that represents the most up-to-date schedule.

• [in] participants: The participants who are involved in the schedule negotiation.

148 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

class Evaluator
A pure abstract interface class for choosing the best proposal.

Subclassed by rmf_traffic::schedule::QuickestFinishEvaluator

Public Functions

virtual std::size_t choose(const std::vector<const Proposal*> &proposals) const = 0
Given a set of proposals, choose the one that is the “best”. It is up to the implementation of the
Evaluator to decide how to rank proposals.

virtual ~Evaluator() = default

template<typename Ptr>
struct SearchResult

Public Functions

inline bool deprecated() const

inline bool absent() const

inline bool found() const

inline operator bool() const

Public Members

SearchStatus status
The status of the search.

Ptr table
The Table that was searched for (or nullptr if status is Deprecated or Absent)

struct Submission

Public Members

ParticipantId participant

PlanId plan

Itinerary itinerary

class Table : public std::enable_shared_from_this<Table>
The Negotiation::Table class gives a view of what the other negotiation participants have proposed.

A Table instance is meant to be viewed by a specific participant and displays the proposals of other partic-
ipants for a specific hierarchies of accommodations. See the documentation of Negotiation::table().

Alongside the views of the other Negotiation participants, the View provided by the Table instance will
show the itineraries of schedule participants that are not part of the Negotiation. That way the external
itineraries can also be accounted for when planning a submission based on this Table.

1.2. Full API 149

rmf_traffic, Release 1.0.0

Public Types

using ViewerPtr = std::shared_ptr<const Viewer>

Public Functions

ViewerPtr viewer() const
Get a viewer for this Table. The Viewer can be safely used across multiple threads.

const Itinerary *submission() const
Return the submission on this Negotiation Table if it has one.

Version version() const
The a pointer to the latest itinerary version that was submitted to this table, if one was submitted at
all.

const Proposal &proposal() const
The proposal on this table so far. This will include the latest itinerary that has been submitted to this
Table if anything has been submitted. Otherwise it will only include the submissions that underlie this
table.

ParticipantId participant() const
The participant that is meant to submit to this Table.

const VersionedKeySequence &sequence() const
The sequence key that refers to this table. This is equivalent to [to_accommodate. . . , for_participant]

std::vector<ParticipantId> unversioned_sequence() const
The versioned sequence key that refers to this table.

bool submit(PlanId plan_id, std::vector<Route> itinerary, Version version)
Submit a proposal for a participant that accommodates some of the other participants in the negotiation
(or none if an empty vector is given for the to_accommodate argument).

Return True if the submission was accepted. False if the version was out of date and nothing changed
in the negotiation.

Parameters
• [in] plan_id: A unique identifier for this plan. If this plan is selected by the negotiation,

then this ID will be submitted to the traffic schedule as the PlanId for this participant.
• [in] itinerary: The itinerary that is being submitted by this participant.
• [in] version: A version number assigned to the submission. If this is less or equal to the

last version number given, then nothing will change.

bool reject(Version version, ParticipantId rejected_by, Alternatives alternatives)
Reject the submission of this Negotiation::Table. This indicates that the underlying proposals are
infeasible for the Participant of this Table to accommodate. The rejecter should give a set of alter-
native rollouts that it is capable of. That way the proposer for this Table can submit an itinerary that
accommodates it.

Return True if the rejection was accepted. False if the version was out of date and nothing changed
in the negotiation.

Parameters
• [in] version: A version number assigned to the submission. If this is equal to or greater

than the last version number given, then this table will be put into a rejected state until a higher
proposal version is submitted.

• [in] rejected_by: The participant who is rejecting this proposal

150 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

• [in] alternatives: A set of rollouts that could be used by the participant that is re-
jecting this proposal. The proposer should use this information to offer a proposal that can
accommodate at least one of these rollouts.

bool rejected() const
Returns true if the proposal put on this Table has been rejected.

void forfeit(Version version)
Give up on this Negotiation Table. This should be called when the participant that is supposed to
submit to this Table is unable to find a feasible proposal.

bool forfeited() const
Returns true if the proposer for this Table has forfeited.

bool defunct() const
Returns true if any of this table’s ancestors were rejected or forfeited. When that happens, this Table
will no longer have any effect on the Negotiation.

TablePtr respond(ParticipantId by_participant)
If by_participant can respond to this table, then this will return a TablePtr that by_participant can
submit a proposal to.

If this function is called before anything has been submitted to this Table, then it will certainly return
a nullptr.

ConstTablePtr respond(ParticipantId by_participant) const

TablePtr parent()
Get the parent Table of this Table if it has a parent.

ConstTablePtr parent() const

std::vector<TablePtr> children()
Get the children of this Table if any children exist.

std::vector<ConstTablePtr> children() const

bool ongoing() const
Return true if the negotiation is ongoing (i.e. the Negotiation instance that created this table is still
alive). When the Negotiation instance that this Table belongs to has destructed, this will begin to
return false.

class Viewer

Public Types

using View = schedule::Viewer::View

using AlternativeMap = std::unordered_map<ParticipantId, std::shared_ptr<Alternatives>>

1.2. Full API 151

rmf_traffic, Release 1.0.0

Public Functions

View query(constQuery::Spacetime ¶meters, const VersionedKeySequence &alterna-
tives) const

View this table with the given parameters.

Parameters
• [in] parameters: The spacetime parameters to filter irrelevant routes out of the view
• [in] rollouts: The selection of which rollout alternatives should be viewed for the

participants who have rejected this proposal in the past.

std::unordered_map<ParticipantId, Endpoint> initial_endpoints(const VersionedKey-
Sequence &alterna-
tives) const

Get the set of initial waypoints for the negotiation participants.

std::unordered_map<ParticipantId, Endpoint> final_endpoints(const VersionedKeySe-
quence &alterantives)
const

Get the set of final waypoints for the negotiation participants.

const AlternativeMap &alternatives() const
When a Negotiation::Table is rejected by one of the participants who is supposed to respond, they
can offer a set of rollout alternatives. If the proposer can accommodate one of the alternatives for
each responding participant, then the negotiation might be able to proceed. This map gives the
alternatives for each participant that has provided them.

const Proposal &base_proposals() const
The proposals submitted to the predecessor tables.

std::shared_ptr<const ParticipantDescription> get_description(ParticipantId partici-
pant_id) const

Get the description of a participant in this Viewer.

ParticipantId participant_id() const
Get the Participant ID of the participant who should submit to this table.

rmf_utils::optional<ParticipantId> parent_id() const
If the Table has a parent, get its Participant ID.

const VersionedKeySequence &sequence() const
The sequence of the table that is being viewed.

bool defunct() const
Returns true if the table of this viewer is no longer relevant. Unlike the other fields of the Viewer,
this is not a snapshot of the table’s state when the Viewer was created; instead this defunct status
will remain in sync with the state of the source Table.

bool rejected() const
Returns true if the proposal put on this Table has been rejected.

bool forfeited() const
Returns true if the proposer for this Table has forfeited.

const Itinerary *submission() const
Return the submission on this Negotiation Table if it has one.

std::optional<rmf_traffic::Time> earliest_base_proposal_time() const
The earliest start time of any of the proposals in the table.

152 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

std::optional<rmf_traffic::Time> latest_base_proposal_time() const
The latest finish time of any of the proposals in the table.

class Endpoint
View the first or last (depending on context) waypoint in a negotiation participant’s itinerary or
alternative.

Public Functions

ParticipantId participant() const
The ID of the participant.

PlanId plan_id() const
The ID of the plan for this endpoint.

RouteId route_id() const
The ID of the route for this endpoint.

const rmf_traffic::Trajectory::Waypoint &waypoint() const
The first or last (depending on context) waypoint.

const std::string &map() const
The map that the endpoint is on.

const ParticipantDescription &description() const
The description of the participant.

struct VersionedKey
This struct is used to select a child table, demaning a specific version.

Public Functions

inline bool operator==(const VersionedKey &other) const

inline bool operator!=(const VersionedKey &other) const

Public Members

ParticipantId participant

Version version

Class Negotiation::Evaluator

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Negotiation.hpp

1.2. Full API 153

rmf_traffic, Release 1.0.0

Nested Relationships

This class is a nested type of Class Negotiation.

Inheritance Relationships

Derived Type

• public rmf_traffic::schedule::QuickestFinishEvaluator (Class QuickestFinishEvalua-
tor)

Class Documentation

class rmf_traffic::schedule::Negotiation::Evaluator
A pure abstract interface class for choosing the best proposal.

Subclassed by rmf_traffic::schedule::QuickestFinishEvaluator

Public Functions

virtual std::size_t choose(const std::vector<const Proposal*> &proposals) const = 0
Given a set of proposals, choose the one that is the “best”. It is up to the implementation of the Evaluator
to decide how to rank proposals.

virtual ~Evaluator() = default

Class Negotiation::Table

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Negotiation.hpp

Nested Relationships

This class is a nested type of Class Negotiation.

Nested Types

• Class Table::Viewer

• Class Viewer::Endpoint

154 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Inheritance Relationships

Base Type

• public std::enable_shared_from_this< Table >

Class Documentation

class rmf_traffic::schedule::Negotiation::Table : public std::enable_shared_from_this<Table>
The Negotiation::Table class gives a view of what the other negotiation participants have proposed.

A Table instance is meant to be viewed by a specific participant and displays the proposals of other participants
for a specific hierarchies of accommodations. See the documentation of Negotiation::table().

Alongside the views of the other Negotiation participants, the View provided by the Table instance will show
the itineraries of schedule participants that are not part of the Negotiation. That way the external itineraries can
also be accounted for when planning a submission based on this Table.

Public Types

using ViewerPtr = std::shared_ptr<const Viewer>

Public Functions

ViewerPtr viewer() const
Get a viewer for this Table. The Viewer can be safely used across multiple threads.

const Itinerary *submission() const
Return the submission on this Negotiation Table if it has one.

Version version() const
The a pointer to the latest itinerary version that was submitted to this table, if one was submitted at all.

const Proposal &proposal() const
The proposal on this table so far. This will include the latest itinerary that has been submitted to this Table
if anything has been submitted. Otherwise it will only include the submissions that underlie this table.

ParticipantId participant() const
The participant that is meant to submit to this Table.

const VersionedKeySequence &sequence() const
The sequence key that refers to this table. This is equivalent to [to_accommodate. . . , for_participant]

std::vector<ParticipantId> unversioned_sequence() const
The versioned sequence key that refers to this table.

bool submit(PlanId plan_id, std::vector<Route> itinerary, Version version)
Submit a proposal for a participant that accommodates some of the other participants in the negotiation (or
none if an empty vector is given for the to_accommodate argument).

Return True if the submission was accepted. False if the version was out of date and nothing changed in
the negotiation.

Parameters

1.2. Full API 155

rmf_traffic, Release 1.0.0

• [in] plan_id: A unique identifier for this plan. If this plan is selected by the negotiation,
then this ID will be submitted to the traffic schedule as the PlanId for this participant.

• [in] itinerary: The itinerary that is being submitted by this participant.

• [in] version: A version number assigned to the submission. If this is less or equal to the
last version number given, then nothing will change.

bool reject(Version version, ParticipantId rejected_by, Alternatives alternatives)
Reject the submission of this Negotiation::Table. This indicates that the underlying proposals are infeasible
for the Participant of this Table to accommodate. The rejecter should give a set of alternative rollouts that
it is capable of. That way the proposer for this Table can submit an itinerary that accommodates it.

Return True if the rejection was accepted. False if the version was out of date and nothing changed in the
negotiation.

Parameters

• [in] version: A version number assigned to the submission. If this is equal to or greater
than the last version number given, then this table will be put into a rejected state until a higher
proposal version is submitted.

• [in] rejected_by: The participant who is rejecting this proposal

• [in] alternatives: A set of rollouts that could be used by the participant that is rejecting
this proposal. The proposer should use this information to offer a proposal that can accommodate
at least one of these rollouts.

bool rejected() const
Returns true if the proposal put on this Table has been rejected.

void forfeit(Version version)
Give up on this Negotiation Table. This should be called when the participant that is supposed to submit
to this Table is unable to find a feasible proposal.

bool forfeited() const
Returns true if the proposer for this Table has forfeited.

bool defunct() const
Returns true if any of this table’s ancestors were rejected or forfeited. When that happens, this Table will
no longer have any effect on the Negotiation.

TablePtr respond(ParticipantId by_participant)
If by_participant can respond to this table, then this will return a TablePtr that by_participant can submit a
proposal to.

If this function is called before anything has been submitted to this Table, then it will certainly return a
nullptr.

ConstTablePtr respond(ParticipantId by_participant) const

TablePtr parent()
Get the parent Table of this Table if it has a parent.

ConstTablePtr parent() const

std::vector<TablePtr> children()
Get the children of this Table if any children exist.

std::vector<ConstTablePtr> children() const

156 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

bool ongoing() const
Return true if the negotiation is ongoing (i.e. the Negotiation instance that created this table is still alive).
When the Negotiation instance that this Table belongs to has destructed, this will begin to return false.

class Viewer

Public Types

using View = schedule::Viewer::View

using AlternativeMap = std::unordered_map<ParticipantId, std::shared_ptr<Alternatives>>

Public Functions

View query(const Query::Spacetime ¶meters, const VersionedKeySequence &alterna-
tives) const

View this table with the given parameters.

Parameters
• [in] parameters: The spacetime parameters to filter irrelevant routes out of the view
• [in] rollouts: The selection of which rollout alternatives should be viewed for the par-

ticipants who have rejected this proposal in the past.

std::unordered_map<ParticipantId, Endpoint> initial_endpoints(const VersionedKeySe-
quence &alternatives)
const

Get the set of initial waypoints for the negotiation participants.

std::unordered_map<ParticipantId, Endpoint> final_endpoints(const VersionedKeySe-
quence &alterantives)
const

Get the set of final waypoints for the negotiation participants.

const AlternativeMap &alternatives() const
When a Negotiation::Table is rejected by one of the participants who is supposed to respond, they can
offer a set of rollout alternatives. If the proposer can accommodate one of the alternatives for each
responding participant, then the negotiation might be able to proceed. This map gives the alternatives
for each participant that has provided them.

const Proposal &base_proposals() const
The proposals submitted to the predecessor tables.

std::shared_ptr<const ParticipantDescription> get_description(ParticipantId partici-
pant_id) const

Get the description of a participant in this Viewer.

ParticipantId participant_id() const
Get the Participant ID of the participant who should submit to this table.

rmf_utils::optional<ParticipantId> parent_id() const
If the Table has a parent, get its Participant ID.

const VersionedKeySequence &sequence() const
The sequence of the table that is being viewed.

bool defunct() const
Returns true if the table of this viewer is no longer relevant. Unlike the other fields of the Viewer,
this is not a snapshot of the table’s state when the Viewer was created; instead this defunct status will
remain in sync with the state of the source Table.

1.2. Full API 157

rmf_traffic, Release 1.0.0

bool rejected() const
Returns true if the proposal put on this Table has been rejected.

bool forfeited() const
Returns true if the proposer for this Table has forfeited.

const Itinerary *submission() const
Return the submission on this Negotiation Table if it has one.

std::optional<rmf_traffic::Time> earliest_base_proposal_time() const
The earliest start time of any of the proposals in the table.

std::optional<rmf_traffic::Time> latest_base_proposal_time() const
The latest finish time of any of the proposals in the table.

class Endpoint
View the first or last (depending on context) waypoint in a negotiation participant’s itinerary or alter-
native.

Public Functions

ParticipantId participant() const
The ID of the participant.

PlanId plan_id() const
The ID of the plan for this endpoint.

RouteId route_id() const
The ID of the route for this endpoint.

const rmf_traffic::Trajectory::Waypoint &waypoint() const
The first or last (depending on context) waypoint.

const std::string &map() const
The map that the endpoint is on.

const ParticipantDescription &description() const
The description of the participant.

Class Table::Viewer

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Negotiation.hpp

Nested Relationships

This class is a nested type of Class Negotiation::Table.

158 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Nested Types

• Class Viewer::Endpoint

Class Documentation

class rmf_traffic::schedule::Negotiation::Table::Viewer

Public Types

using View = schedule::Viewer::View

using AlternativeMap = std::unordered_map<ParticipantId, std::shared_ptr<Alternatives>>

Public Functions

View query(const Query::Spacetime ¶meters, const VersionedKeySequence &alternatives)
const

View this table with the given parameters.

Parameters

• [in] parameters: The spacetime parameters to filter irrelevant routes out of the view

• [in] rollouts: The selection of which rollout alternatives should be viewed for the partici-
pants who have rejected this proposal in the past.

std::unordered_map<ParticipantId, Endpoint> initial_endpoints(const VersionedKeySequence
&alternatives) const

Get the set of initial waypoints for the negotiation participants.

std::unordered_map<ParticipantId, Endpoint> final_endpoints(const VersionedKeySequence
&alterantives) const

Get the set of final waypoints for the negotiation participants.

const AlternativeMap &alternatives() const
When a Negotiation::Table is rejected by one of the participants who is supposed to respond, they can
offer a set of rollout alternatives. If the proposer can accommodate one of the alternatives for each re-
sponding participant, then the negotiation might be able to proceed. This map gives the alternatives for
each participant that has provided them.

const Proposal &base_proposals() const
The proposals submitted to the predecessor tables.

std::shared_ptr<const ParticipantDescription> get_description(ParticipantId participant_id)
const

Get the description of a participant in this Viewer.

ParticipantId participant_id() const
Get the Participant ID of the participant who should submit to this table.

rmf_utils::optional<ParticipantId> parent_id() const
If the Table has a parent, get its Participant ID.

const VersionedKeySequence &sequence() const
The sequence of the table that is being viewed.

1.2. Full API 159

rmf_traffic, Release 1.0.0

bool defunct() const
Returns true if the table of this viewer is no longer relevant. Unlike the other fields of the Viewer, this is
not a snapshot of the table’s state when the Viewer was created; instead this defunct status will remain in
sync with the state of the source Table.

bool rejected() const
Returns true if the proposal put on this Table has been rejected.

bool forfeited() const
Returns true if the proposer for this Table has forfeited.

const Itinerary *submission() const
Return the submission on this Negotiation Table if it has one.

std::optional<rmf_traffic::Time> earliest_base_proposal_time() const
The earliest start time of any of the proposals in the table.

std::optional<rmf_traffic::Time> latest_base_proposal_time() const
The latest finish time of any of the proposals in the table.

class Endpoint
View the first or last (depending on context) waypoint in a negotiation participant’s itinerary or alternative.

Public Functions

ParticipantId participant() const
The ID of the participant.

PlanId plan_id() const
The ID of the plan for this endpoint.

RouteId route_id() const
The ID of the route for this endpoint.

const rmf_traffic::Trajectory::Waypoint &waypoint() const
The first or last (depending on context) waypoint.

const std::string &map() const
The map that the endpoint is on.

const ParticipantDescription &description() const
The description of the participant.

Class Viewer::Endpoint

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Negotiation.hpp

Nested Relationships

This class is a nested type of Class Table::Viewer.

160 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::schedule::Negotiation::Table::Viewer::Endpoint
View the first or last (depending on context) waypoint in a negotiation participant’s itinerary or alternative.

Public Functions

ParticipantId participant() const
The ID of the participant.

PlanId plan_id() const
The ID of the plan for this endpoint.

RouteId route_id() const
The ID of the route for this endpoint.

const rmf_traffic::Trajectory::Waypoint &waypoint() const
The first or last (depending on context) waypoint.

const std::string &map() const
The map that the endpoint is on.

const ParticipantDescription &description() const
The description of the participant.

Class Negotiator

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Negotiator.hpp

Nested Relationships

Nested Types

• Class Negotiator::Responder

Inheritance Relationships

Derived Types

• public rmf_traffic::agv::SimpleNegotiator (Class SimpleNegotiator)

• public rmf_traffic::schedule::StubbornNegotiator (Class StubbornNegotiator)

1.2. Full API 161

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::schedule::Negotiator
A pure abstract interface class that facilitates negotiating a resolution to a schedule conflict. An example imple-
mentation of this class can be found as rmf_traffic::agv::Negotiator.

Subclassed by rmf_traffic::agv::SimpleNegotiator, rmf_traffic::schedule::StubbornNegotiator

Public Types

using TableViewerPtr = Negotiation::Table::ViewerPtr

using ResponderPtr = std::shared_ptr<const Responder>

Public Functions

virtual void respond(const TableViewerPtr &table_viewer, const ResponderPtr &responder)
= 0

Have the Negotiator respond to an attempt to negotiate.

Parameters

• [in] table: The Negotiation::Table that is being used for the negotiation.

• [in] responder: The Responder instance that the negotiator should use when a response is
ready.

• [in] interrupt_flag: A pointer to a flag that can be used to interrupt the negotiator if it
has been running for too long. If the planner should run indefinitely, then pass a nullptr.

virtual ~Negotiator() = default

class Responder
A pure abstract interface class that allows the Negotiator to respond to other Negotiators.

Subclassed by rmf_traffic::schedule::SimpleResponder

Public Types

using ParticipantId = rmf_traffic::schedule::ParticipantId

using ItineraryVersion = rmf_traffic::schedule::ItineraryVersion

using UpdateVersion = rmf_utils::optional<ItineraryVersion>

using ApprovalCallback = std::function<UpdateVersion()>

using Alternatives = Negotiation::Alternatives

162 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

virtual void submit(PlanId plan_id, std::vector<Route> itinerary, ApprovalCallback ap-
proval_callback = nullptr) const = 0

The negotiator will call this function when it has an itinerary to submit in response to a negotiation.

Parameters
• [in] plan_id: A unique ID that refers to the plan that is being submitted.
• [in] itinerary: The itinerary that is being proposed
• [in] approval_callback: This callback will get triggered if this submission gets ap-

proved. The return value of the callback should be the itinerary version of the participant update
that will follow the resolution of this negotiation (or a nullopt if no update will be performed).
Pass in a nullptr if an approval callback is not necessary.

virtual void reject(const Alternatives &alternatives) const = 0
The negotiator will call this function if it has decided to reject an attempt to negotiate. It must supply
a set of alternatives for the parent negotiator to consider for its next proposal.

virtual void forfeit(const std::vector<ParticipantId> &blockers) const = 0
The negotiator will call this function if it cannot find any feasible proposal or alternative that can be
accommodated by the parent.

Parameters
• [in] blockers: Give the set of schedule participants that are blocking a solution from

being found.

virtual ~Responder() = default

Class Negotiator::Responder

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Negotiator.hpp

Nested Relationships

This class is a nested type of Class Negotiator.

Inheritance Relationships

Derived Type

• public rmf_traffic::schedule::SimpleResponder (Class SimpleResponder)

1.2. Full API 163

rmf_traffic, Release 1.0.0

Class Documentation

class rmf_traffic::schedule::Negotiator::Responder
A pure abstract interface class that allows the Negotiator to respond to other Negotiators.

Subclassed by rmf_traffic::schedule::SimpleResponder

Public Types

using ParticipantId = rmf_traffic::schedule::ParticipantId

using ItineraryVersion = rmf_traffic::schedule::ItineraryVersion

using UpdateVersion = rmf_utils::optional<ItineraryVersion>

using ApprovalCallback = std::function<UpdateVersion()>

using Alternatives = Negotiation::Alternatives

Public Functions

virtual void submit(PlanId plan_id, std::vector<Route> itinerary, ApprovalCallback ap-
proval_callback = nullptr) const = 0

The negotiator will call this function when it has an itinerary to submit in response to a negotiation.

Parameters

• [in] plan_id: A unique ID that refers to the plan that is being submitted.

• [in] itinerary: The itinerary that is being proposed

• [in] approval_callback: This callback will get triggered if this submission gets ap-
proved. The return value of the callback should be the itinerary version of the participant update
that will follow the resolution of this negotiation (or a nullopt if no update will be performed).
Pass in a nullptr if an approval callback is not necessary.

virtual void reject(const Alternatives &alternatives) const = 0
The negotiator will call this function if it has decided to reject an attempt to negotiate. It must supply a set
of alternatives for the parent negotiator to consider for its next proposal.

virtual void forfeit(const std::vector<ParticipantId> &blockers) const = 0
The negotiator will call this function if it cannot find any feasible proposal or alternative that can be
accommodated by the parent.

Parameters

• [in] blockers: Give the set of schedule participants that are blocking a solution from being
found.

virtual ~Responder() = default

164 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Class ParticipantDescription

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_ParticipantDescription.hpp

Class Documentation

class rmf_traffic::schedule::ParticipantDescription

Public Types

enum Rx
Enumeration for responsiveness.

Values:

enumerator Invalid
This responsiveness type is illegal and will always be rejected by the schedule verifier. Having this
movement type implies a major bug in the code and should be reported immediately.

enumerator Unresponsive
The participant will not respond to any conflicts.

enumerator Responsive
The participant will try to respond to conflicts.

Public Functions

ParticipantDescription(std::string name, std::string owner, Rx responsiveness, Profile profile)
Constructor

Parameters

• [in] name: The name of the object participating in the schedule.

• [in] owner: The name of the “owner” of this participant. This does not currently have a
formal definition, but for most vehicles it should be the name of the fleet that the vehicle belongs
to.

• [in] responsiveness: What category of responsiveness this participant has. A Responsive
participant might be able to react to a conflict or a request for accommodations.

bool operator==(const ParticipantDescription &rhs) const
Equality operator.

bool operator!=(const ParticipantDescription &rhs) const
Inequality operator.

ParticipantDescription &name(std::string value)
Set the name of the participant.

const std::string &name() const
Get the name of the participant.

ParticipantDescription &owner(std::string value)
Set the name of the “owner” of the participant.

1.2. Full API 165

rmf_traffic, Release 1.0.0

const std::string &owner() const
Get the name of the “owner” of the participant.

ParticipantDescription &responsiveness(Rx value)
Set the responsiveness of the participant.

Rx responsiveness() const
Get the responsiveness of the participant.

ParticipantDescription &profile(Profile new_profile)
Set the profile of the participant.

const Profile &profile() const
Get the profile of the participant.

Class Patch

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Patch.hpp

Nested Relationships

Nested Types

• Class Patch::Participant

Class Documentation

class rmf_traffic::schedule::Patch
A container of Database changes.

Public Types

using base_iterator = rmf_traffic::detail::bidirectional_iterator<E, I, F>

using const_iterator = base_iterator<const Participant, IterImpl, Patch>

Public Functions

Patch(std::vector<Participant> changes, rmf_utils::optional<Change::Cull> cull,
std::optional<Version> base_version, Version latest_version)

Constructor. Mirrors should evaluate the fields of the Patch class in the order of these constructor argu-
ments.

Parameters

• [in] changes: Information about how the participants have changed since the last update.

• [in] cull: Information about how the database has culled old data since the last update.

• [in] base_version: The base version of the database that this Patch builds on top of.

• [in] latest_version: The lastest version of the database that this Patch represents.

166 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

const_iterator begin() const
Returns an iterator to the first element of the Patch.

const_iterator end() const
Returns an iterator to the element following the last element of the Patch. This iterator acts as a placeholder;
attempting to dereference it results in undefined behavior.

std::size_t size() const
Get the number of elements in this Patch.

const Change::Cull *cull() const
Get the cull information for this patch if a cull has occurred.

std::optional<Version> base_version() const
Get the base version of the Database that this patch builds on.

If this is a nullopt, then this patch does not need to build off of any base version.

Version latest_version() const
Get the latest version of the Database that informed this Patch.

class Participant

Public Functions

Participant(ParticipantId id, ItineraryVersion itinerary_version, Change::Erase
erasures, std::vector<Change::Delay> delays, Change::Add additions,
std::optional<Change::Progress> progress)

Constructor

Parameters
• [in] id: The ID of the participant that is being changed
• [in] itinerary_version: The version of this participant’s itinerary that results from

applying this patch
• [in] erasures: The information about which routes to erase
• [in] delays: The information about what delays have occurred
• [in] additions: The information about which routes to add
• [in] progress: Information about progress that the participant has made since the last

change, if any.

ParticipantId participant_id() const
The ID of the participant that this set of changes will patch.

ItineraryVersion itinerary_version() const
The itinerary version that results from this patch.

const Change::Erase &erasures() const
The route erasures to perform.

These erasures should be performed before any other changes.

const std::vector<Change::Delay> &delays() const
The sequence of delays to apply.

These delays should be applied in sequential order after the erasures are performed, and before any
additions are performed.

const Change::Add &additions() const
The set of additions to perfom.

1.2. Full API 167

rmf_traffic, Release 1.0.0

These additions should be applied after all other changes.

const std::optional<Change::Progress> &progress() const
Progress that this participant made since the last version, if any.

Class Patch::Participant

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Patch.hpp

Nested Relationships

This class is a nested type of Class Patch.

Class Documentation

class rmf_traffic::schedule::Patch::Participant

Public Functions

Participant(ParticipantId id, ItineraryVersion itinerary_version, Change::Erase era-
sures, std::vector<Change::Delay> delays, Change::Add additions,
std::optional<Change::Progress> progress)

Constructor

Parameters

• [in] id: The ID of the participant that is being changed

• [in] itinerary_version: The version of this participant’s itinerary that results from ap-
plying this patch

• [in] erasures: The information about which routes to erase

• [in] delays: The information about what delays have occurred

• [in] additions: The information about which routes to add

• [in] progress: Information about progress that the participant has made since the last
change, if any.

ParticipantId participant_id() const
The ID of the participant that this set of changes will patch.

ItineraryVersion itinerary_version() const
The itinerary version that results from this patch.

const Change::Erase &erasures() const
The route erasures to perform.

These erasures should be performed before any other changes.

const std::vector<Change::Delay> &delays() const
The sequence of delays to apply.

These delays should be applied in sequential order after the erasures are performed, and before any addi-
tions are performed.

168 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

const Change::Add &additions() const
The set of additions to perfom.

These additions should be applied after all other changes.

const std::optional<Change::Progress> &progress() const
Progress that this participant made since the last version, if any.

Class Query

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Query.hpp

Nested Relationships

Nested Types

• Class Query::Participants

• Class Participants::All

• Class Participants::Exclude

• Class Participants::Include

• Class Query::Spacetime

• Class Spacetime::All

• Class Spacetime::Regions

• Class Spacetime::Timespan

Class Documentation

class rmf_traffic::schedule::Query
A class to define a query into a schedule database.

Public Types

using base_iterator = rmf_traffic::detail::bidirectional_iterator<E, I, F>

Public Functions

Spacetime &spacetime()
Get the Spacetime component of this Query.

const Spacetime &spacetime() const
const-qualified spacetime()

Participants &participants()
Get the Participants component of this Query.

const Participants &participants() const
const-qualified participants()

1.2. Full API 169

rmf_traffic, Release 1.0.0

class Participants
A class to describe a filter on which schedule participants to pay attention to.

Public Types

enum Mode
Values:

enumerator Invalid
Invalid mode, behavior is undefined.

enumerator All
Get all participants.

enumerator Include
Get only the participants listed.

enumerator Exclude
Get all participants except the ones listed.

Public Functions

Participants()
Default constructor, uses All mode.

Mode get_mode() const
Get the mode for this Participants filter.

All *all()
Get the All interface if this Participants filter is in All mode, otherwise get a nullptr.

const All *all() const
const-qualified all()

Include *include()
Get the Include interface if this Participants filter is in Include mode, otherwise get a nullptr.

const Include *include() const
const-qualified include()

Participants &include(std::vector<ParticipantId> ids)
Change this filter to Include mode, and include the specified participant IDs.

Exclude *exclude()
Get the Exclude interface if this Participants filter is in Exclude mode, otherwise get a nullptr.

const Exclude *exclude() const
const-qualified exclude()

Participants &exclude(std::vector<ParticipantId> ids)
Change this filter to Exclude mode, and exclude the specified participant IDs.

170 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Static Functions

static const Participants &make_all()
Constructor to use All mode.

static Participants make_only(std::vector<ParticipantId> ids)
Constructor to use Include mode.

Parameters
• [in] ids: The IDs of the participants that should be included in the query.

static Participants make_all_except(std::vector<ParticipantId> ids)
Constructor to use Exclude mode.

Parameters
• [in] ids: The IDs of the participants that should be excluded from the query.

class All
This is a placeholder class in case we ever want to extend the features of the All mode.

class Exclude
The interface for the Participants::Exclude mode.

Public Functions

Exclude(std::vector<ParticipantId> ids)
Constructor.

const std::vector<ParticipantId> &get_ids() const
Get the IDs of the participants that should be excluded.

Exclude &set_ids(std::vector<ParticipantId> ids)
Set the IDs of the participants that should be excluded.

class Include
The interface for the Participants::Include mode.

Public Functions

Include(std::vector<ParticipantId> ids)
Constructor.

const std::vector<ParticipantId> &get_ids() const
Get the IDs of the participants that should be included.

Include &set_ids(std::vector<ParticipantId> ids)
Set the IDs of the participants that should be included.

class Spacetime
A class to describe spacetime filters for a schedule Query.

1.2. Full API 171

rmf_traffic, Release 1.0.0

Public Types

enum Mode
This enumerator determines what Spacetime mode the query will be in.

Values:

enumerator Invalid
Invalid mode, behavior is undefined.

enumerator All
Request trajectories throughout all of space and time. This will still be constrained by the version
field.

enumerator Regions
Request trajectories in specific regions spacetime regions.

enumerator Timespan
Request trajectories that are active in a specified timespan.

using Space = geometry::Space

Public Functions

Spacetime()
Default constructor, uses All mode.

Spacetime(std::vector<Region> regions)
Regions mode constructor.

Parameters
• [in] regions: The regions to use

Spacetime(std::vector<std::string> maps)
Timespan mode constructor.

This will query all trajectories across all time for the specified maps.

Parameters
• [in] maps: The maps to query from

Spacetime(std::vector<std::string> maps, Time lower_bound)
Timespan mode constructor.

This will query all trajectories that have at least one waypoint active after the lower bound on the
specified maps.

Parameters
• [in] maps: The maps to query from
• [in] lower_bound: The lower bound on time

Spacetime(std::vector<std::string> maps, Time lower_bound, Time upper_bound)
Timespan mode constructor.

This will query all trajectories that have at least one waypoint active after the lower bound and before
the upper bound on the specified maps.

Parameters

172 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

• [in] maps: The maps to query from
• [in] lower_bound: The lower bound on time
• [in] upper_bound: The upper bound on time

Mode get_mode() const
Get the current Spacetime Mode of this query.

All &query_all()
Set the mode of this Spacetime to query for All Trajectories throughout Spacetime.

Regions &query_regions(std::vector<Region> regions = {})
Set the mode of this Spacetime to query for specific Regions.

Parameters
• [in] regions: Specify the regions of Spacetime to use.

Regions *regions()
Get the Regions of Spacetime to use for this Query. If this Spacetime is not in Regions mode, then this
will return a nullptr.

const Regions *regions() const
const-qualified regions()

Timespan &query_timespan(std::vector<std::string> maps, Time lower_bound, Time up-
per_bound)

Query a timespan between two bounds for a set of maps.

Timespan &query_timespan(std::vector<std::string> maps, Time lower_bound)
Query from a lower bound in time for a set of maps.

Timespan &query_timespan(std::vector<std::string> maps)
Query for all trajectories on a set of maps.

Timespan &query_timespan(bool query_all_maps = true)
Switch to timespan mode, and specify whether or not to use all maps.

Timespan *timespan()
Get the Timespan of Spacetime to use for this Query. If this Spacetime is not in Timespan mode, then
this will return a nullptr.

const Timespan *timespan() const
const-qualified timespan()

class All
This is a placeholder class in case we ever want to extend the features of the All mode.

class Regions
A container class for rmf_traffic::Region instances. Using Regions mode will query for Trajectories
that intersect the specified regions.

1.2. Full API 173

rmf_traffic, Release 1.0.0

Public Types

using iterator = base_iterator<Region, IterImpl, Regions>

using const_iterator = base_iterator<const Region, IterImpl, Regions>

Public Functions

void push_back(Region region)
Add a Region to this container.

void pop_back()
Remove the last Region that was added to this container.

iterator erase(iterator it)
Erase a Region based on its iterator.

iterator erase(iterator first, iterator last)
Erase a range of Regions based on their iterators.

iterator begin()
Get the beginning iterator of this container.

const_iterator begin() const
const-qualified begin()

const_iterator cbegin() const
Explicitly const-qualified alternative to begin()

iterator end()
Get the one-past-the-end iterator of this container.

const_iterator end() const
const-qualified end()

const_iterator cend() const
Explicitly const-qualified alternative to end()

std::size_t size() const
Get the number of Spacetime Region elements in this container.

class Timespan
A class for specifying a timespan.

Public Functions

const std::unordered_set<std::string> &maps() const
Get the maps that will be queried.

Timespan &add_map(std::string map_name)
Add a map to the query.

Timespan &remove_map(const std::string &map_name)
Remove a map from the query.

Timespan &clear_maps()
Remove all maps from the query.

bool all_maps() const
Returns true if all maps should be queried. If true, the set of maps mentioned above will be
ignored.

174 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Timespan &all_maps(bool query_all_maps)
Set whether all maps should be queried. When true, the set of maps above will be ignored. When
false, only the maps in the set above will be included in the query.

const Time *get_lower_time_bound() const
Get the lower bound for the time range.

If there is no lower bound for the time range, then this returns a nullptr.

Timespan &set_lower_time_bound(Time time)
Set the lower bound fore the time range.

Timespan &remove_lower_time_bound()
Remove the lower bound for the time range.

const Time *get_upper_time_bound() const
Get the upper bound for the time range.

If there is no upper bound for the time range, then this returns a nullptr.

Timespan &set_upper_time_bound(Time time)
Set the upper bound for the time range.

Timespan &remove_upper_time_bound()
Remove the upper bound for the time range.

Class Query::Participants

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Query.hpp

Nested Relationships

This class is a nested type of Class Query.

Nested Types

• Class Participants::All

• Class Participants::Exclude

• Class Participants::Include

Class Documentation

class rmf_traffic::schedule::Query::Participants
A class to describe a filter on which schedule participants to pay attention to.

1.2. Full API 175

rmf_traffic, Release 1.0.0

Public Types

enum Mode
Values:

enumerator Invalid
Invalid mode, behavior is undefined.

enumerator All
Get all participants.

enumerator Include
Get only the participants listed.

enumerator Exclude
Get all participants except the ones listed.

Public Functions

Participants()
Default constructor, uses All mode.

Mode get_mode() const
Get the mode for this Participants filter.

All *all()
Get the All interface if this Participants filter is in All mode, otherwise get a nullptr.

const All *all() const
const-qualified all()

Include *include()
Get the Include interface if this Participants filter is in Include mode, otherwise get a nullptr.

const Include *include() const
const-qualified include()

Participants &include(std::vector<ParticipantId> ids)
Change this filter to Include mode, and include the specified participant IDs.

Exclude *exclude()
Get the Exclude interface if this Participants filter is in Exclude mode, otherwise get a nullptr.

const Exclude *exclude() const
const-qualified exclude()

Participants &exclude(std::vector<ParticipantId> ids)
Change this filter to Exclude mode, and exclude the specified participant IDs.

Public Static Functions

static const Participants &make_all()
Constructor to use All mode.

static Participants make_only(std::vector<ParticipantId> ids)
Constructor to use Include mode.

Parameters

176 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

• [in] ids: The IDs of the participants that should be included in the query.

static Participants make_all_except(std::vector<ParticipantId> ids)
Constructor to use Exclude mode.

Parameters

• [in] ids: The IDs of the participants that should be excluded from the query.

class All
This is a placeholder class in case we ever want to extend the features of the All mode.

class Exclude
The interface for the Participants::Exclude mode.

Public Functions

Exclude(std::vector<ParticipantId> ids)
Constructor.

const std::vector<ParticipantId> &get_ids() const
Get the IDs of the participants that should be excluded.

Exclude &set_ids(std::vector<ParticipantId> ids)
Set the IDs of the participants that should be excluded.

class Include
The interface for the Participants::Include mode.

Public Functions

Include(std::vector<ParticipantId> ids)
Constructor.

const std::vector<ParticipantId> &get_ids() const
Get the IDs of the participants that should be included.

Include &set_ids(std::vector<ParticipantId> ids)
Set the IDs of the participants that should be included.

Class Participants::All

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Query.hpp

Nested Relationships

This class is a nested type of Class Query::Participants.

1.2. Full API 177

rmf_traffic, Release 1.0.0

Class Documentation

class All
This is a placeholder class in case we ever want to extend the features of the All mode.

Class Participants::Exclude

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Query.hpp

Nested Relationships

This class is a nested type of Class Query::Participants.

Class Documentation

class rmf_traffic::schedule::Query::Participants::Exclude
The interface for the Participants::Exclude mode.

Public Functions

Exclude(std::vector<ParticipantId> ids)
Constructor.

const std::vector<ParticipantId> &get_ids() const
Get the IDs of the participants that should be excluded.

Exclude &set_ids(std::vector<ParticipantId> ids)
Set the IDs of the participants that should be excluded.

Class Participants::Include

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Query.hpp

Nested Relationships

This class is a nested type of Class Query::Participants.

Class Documentation

class rmf_traffic::schedule::Query::Participants::Include
The interface for the Participants::Include mode.

178 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

Include(std::vector<ParticipantId> ids)
Constructor.

const std::vector<ParticipantId> &get_ids() const
Get the IDs of the participants that should be included.

Include &set_ids(std::vector<ParticipantId> ids)
Set the IDs of the participants that should be included.

Class Query::Spacetime

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Query.hpp

Nested Relationships

This class is a nested type of Class Query.

Nested Types

• Class Spacetime::All

• Class Spacetime::Regions

• Class Spacetime::Timespan

Class Documentation

class rmf_traffic::schedule::Query::Spacetime
A class to describe spacetime filters for a schedule Query.

Public Types

enum Mode
This enumerator determines what Spacetime mode the query will be in.

Values:

enumerator Invalid
Invalid mode, behavior is undefined.

enumerator All
Request trajectories throughout all of space and time. This will still be constrained by the version
field.

enumerator Regions
Request trajectories in specific regions spacetime regions.

enumerator Timespan
Request trajectories that are active in a specified timespan.

using Space = geometry::Space

1.2. Full API 179

rmf_traffic, Release 1.0.0

Public Functions

Spacetime()
Default constructor, uses All mode.

Spacetime(std::vector<Region> regions)
Regions mode constructor.

Parameters

• [in] regions: The regions to use

Spacetime(std::vector<std::string> maps)
Timespan mode constructor.

This will query all trajectories across all time for the specified maps.

Parameters

• [in] maps: The maps to query from

Spacetime(std::vector<std::string> maps, Time lower_bound)
Timespan mode constructor.

This will query all trajectories that have at least one waypoint active after the lower bound on the specified
maps.

Parameters

• [in] maps: The maps to query from

• [in] lower_bound: The lower bound on time

Spacetime(std::vector<std::string> maps, Time lower_bound, Time upper_bound)
Timespan mode constructor.

This will query all trajectories that have at least one waypoint active after the lower bound and before the
upper bound on the specified maps.

Parameters

• [in] maps: The maps to query from

• [in] lower_bound: The lower bound on time

• [in] upper_bound: The upper bound on time

Mode get_mode() const
Get the current Spacetime Mode of this query.

All &query_all()
Set the mode of this Spacetime to query for All Trajectories throughout Spacetime.

Regions &query_regions(std::vector<Region> regions = {})
Set the mode of this Spacetime to query for specific Regions.

Parameters

180 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

• [in] regions: Specify the regions of Spacetime to use.

Regions *regions()
Get the Regions of Spacetime to use for this Query. If this Spacetime is not in Regions mode, then this will
return a nullptr.

const Regions *regions() const
const-qualified regions()

Timespan &query_timespan(std::vector<std::string> maps, Time lower_bound, Time upper_bound)
Query a timespan between two bounds for a set of maps.

Timespan &query_timespan(std::vector<std::string> maps, Time lower_bound)
Query from a lower bound in time for a set of maps.

Timespan &query_timespan(std::vector<std::string> maps)
Query for all trajectories on a set of maps.

Timespan &query_timespan(bool query_all_maps = true)
Switch to timespan mode, and specify whether or not to use all maps.

Timespan *timespan()
Get the Timespan of Spacetime to use for this Query. If this Spacetime is not in Timespan mode, then this
will return a nullptr.

const Timespan *timespan() const
const-qualified timespan()

class All
This is a placeholder class in case we ever want to extend the features of the All mode.

class Regions
A container class for rmf_traffic::Region instances. Using Regions mode will query for Trajectories that
intersect the specified regions.

Public Types

using iterator = base_iterator<Region, IterImpl, Regions>

using const_iterator = base_iterator<const Region, IterImpl, Regions>

Public Functions

void push_back(Region region)
Add a Region to this container.

void pop_back()
Remove the last Region that was added to this container.

iterator erase(iterator it)
Erase a Region based on its iterator.

iterator erase(iterator first, iterator last)
Erase a range of Regions based on their iterators.

iterator begin()
Get the beginning iterator of this container.

const_iterator begin() const
const-qualified begin()

1.2. Full API 181

rmf_traffic, Release 1.0.0

const_iterator cbegin() const
Explicitly const-qualified alternative to begin()

iterator end()
Get the one-past-the-end iterator of this container.

const_iterator end() const
const-qualified end()

const_iterator cend() const
Explicitly const-qualified alternative to end()

std::size_t size() const
Get the number of Spacetime Region elements in this container.

class Timespan
A class for specifying a timespan.

Public Functions

const std::unordered_set<std::string> &maps() const
Get the maps that will be queried.

Timespan &add_map(std::string map_name)
Add a map to the query.

Timespan &remove_map(const std::string &map_name)
Remove a map from the query.

Timespan &clear_maps()
Remove all maps from the query.

bool all_maps() const
Returns true if all maps should be queried. If true, the set of maps mentioned above will be ignored.

Timespan &all_maps(bool query_all_maps)
Set whether all maps should be queried. When true, the set of maps above will be ignored. When
false, only the maps in the set above will be included in the query.

const Time *get_lower_time_bound() const
Get the lower bound for the time range.

If there is no lower bound for the time range, then this returns a nullptr.

Timespan &set_lower_time_bound(Time time)
Set the lower bound fore the time range.

Timespan &remove_lower_time_bound()
Remove the lower bound for the time range.

const Time *get_upper_time_bound() const
Get the upper bound for the time range.

If there is no upper bound for the time range, then this returns a nullptr.

Timespan &set_upper_time_bound(Time time)
Set the upper bound for the time range.

Timespan &remove_upper_time_bound()
Remove the upper bound for the time range.

182 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Class Spacetime::All

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Query.hpp

Nested Relationships

This class is a nested type of Class Query::Spacetime.

Class Documentation

class All
This is a placeholder class in case we ever want to extend the features of the All mode.

Class Spacetime::Regions

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Query.hpp

Nested Relationships

This class is a nested type of Class Query::Spacetime.

Class Documentation

class rmf_traffic::schedule::Query::Spacetime::Regions
A container class for rmf_traffic::Region instances. Using Regions mode will query for Trajectories that intersect
the specified regions.

Public Types

using iterator = base_iterator<Region, IterImpl, Regions>

using const_iterator = base_iterator<const Region, IterImpl, Regions>

Public Functions

void push_back(Region region)
Add a Region to this container.

void pop_back()
Remove the last Region that was added to this container.

iterator erase(iterator it)
Erase a Region based on its iterator.

iterator erase(iterator first, iterator last)
Erase a range of Regions based on their iterators.

iterator begin()
Get the beginning iterator of this container.

1.2. Full API 183

rmf_traffic, Release 1.0.0

const_iterator begin() const
const-qualified begin()

const_iterator cbegin() const
Explicitly const-qualified alternative to begin()

iterator end()
Get the one-past-the-end iterator of this container.

const_iterator end() const
const-qualified end()

const_iterator cend() const
Explicitly const-qualified alternative to end()

std::size_t size() const
Get the number of Spacetime Region elements in this container.

Class Spacetime::Timespan

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Query.hpp

Nested Relationships

This class is a nested type of Class Query::Spacetime.

Class Documentation

class rmf_traffic::schedule::Query::Spacetime::Timespan
A class for specifying a timespan.

Public Functions

const std::unordered_set<std::string> &maps() const
Get the maps that will be queried.

Timespan &add_map(std::string map_name)
Add a map to the query.

Timespan &remove_map(const std::string &map_name)
Remove a map from the query.

Timespan &clear_maps()
Remove all maps from the query.

bool all_maps() const
Returns true if all maps should be queried. If true, the set of maps mentioned above will be ignored.

Timespan &all_maps(bool query_all_maps)
Set whether all maps should be queried. When true, the set of maps above will be ignored. When false,
only the maps in the set above will be included in the query.

const Time *get_lower_time_bound() const
Get the lower bound for the time range.

If there is no lower bound for the time range, then this returns a nullptr.

184 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Timespan &set_lower_time_bound(Time time)
Set the lower bound fore the time range.

Timespan &remove_lower_time_bound()
Remove the lower bound for the time range.

const Time *get_upper_time_bound() const
Get the upper bound for the time range.

If there is no upper bound for the time range, then this returns a nullptr.

Timespan &set_upper_time_bound(Time time)
Set the upper bound for the time range.

Timespan &remove_upper_time_bound()
Remove the upper bound for the time range.

Class QuickestFinishEvaluator

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Negotiation.hpp

Inheritance Relationships

Base Type

• public rmf_traffic::schedule::Negotiation::Evaluator (Class Negotiation::Evaluator)

Class Documentation

class rmf_traffic::schedule::QuickestFinishEvaluator : public rmf_traffic::schedule::Negotiation::Evaluator
An implementation of an evaluator that chooses the proposal that minimizes net delays in completing the
itineraries.

Public Functions

std::size_t choose(const std::vector<const Negotiation::Proposal*> &proposals) const final

Class RectificationRequester

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Rectifier.hpp

Class Documentation

class rmf_traffic::schedule::RectificationRequester
RectificationRequester is a pure abstract class which should be implemented for any middlewares that intend to
act as transport layers for the scheduling system.

Classes that derive from RectificationRequester do not need to implement any interfaces, but they should practice
RAII. The lifecycle of the RectificationRequester will be tied to the Participant that it was created for.

When a schedule database reports an inconsistency for the participant tied to a RectificationRequester instance,
the instance should call Rectifier::retransmit() on the Rectifier that was assigned to it.

1.2. Full API 185

rmf_traffic, Release 1.0.0

Public Functions

virtual ~RectificationRequester() = 0
This destructor is pure virtual to ensure that a derived class is instantiated.

Class RectificationRequesterFactory

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Rectifier.hpp

Inheritance Relationships

Derived Type

• public rmf_traffic::schedule::DatabaseRectificationRequesterFactory (Class
DatabaseRectificationRequesterFactory)

Class Documentation

class rmf_traffic::schedule::RectificationRequesterFactory
The RectificationRequesterFactory is a pure abstract interface class which should be implemented for any mid-
dlewares that intend to act as transport layers for the scheduling system.

Subclassed by rmf_traffic::schedule::DatabaseRectificationRequesterFactory

Public Functions

virtual std::unique_ptr<RectificationRequester> make(Rectifier rectifier, ParticipantId partici-
pant_id) = 0

Create a RectificationRequester to be held by a Participant

Parameters

• [in] rectifier: This rectifier can be used by the RectificationRequester to ask the partici-
pant to retransmit some of its changes.

• [in] participant_id: The ID of the participant that will hold onto this RectificationRe-
quester. This is the same participant that the rectifier will request retransmissions to.

virtual ~RectificationRequesterFactory() = default

Class Rectifier

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Rectifier.hpp

186 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Nested Relationships

Nested Types

• Struct Rectifier::Range

Class Documentation

class rmf_traffic::schedule::Rectifier
The Rectifier class provides an interface for telling a Participant to rectify an inconsistency in the information
received by a database. This rectification protocol is important when the schedule is being managed over an
unreliable network.

The Rectifier class can be used by a RectifierRequester to ask a participant to retransmit a range of its past
itinerary changes.

Only the Participant class is able to create a Rectifier instance. Users of rmf_traffic cannot instantiate a Rectifier.

Public Functions

void retransmit(const std::vector<Range> &ranges, ItineraryVersion last_known_itinerary, Pro-
gressVersion last_known_progress)

Ask the participant to retransmit the specified range of its itinerary changes.

Parameters

• [in] ranges: The ranges of missing Itinerary IDs

• [in] last_known_itinerary: The last ItineraryVersion known upstream.

• [in] last_known_progress: The last ProgressVersion known upstream.

void correct_id(ParticipantId new_id)
Correct the ID of the participant.

std::optional<ItineraryVersion> current_version() const
Get the current ItineraryVersion of the Participant.

std::optional<ParticipantId> get_id() const
Get the ID of the Participant.

std::optional<ParticipantDescription> get_description() const
Get the description of the Participant.

struct Range
A range of itinerary change IDs that is currently missing from a database. All IDs from lower to upper are
missing, including lower and upper themselves.

It is undefined behavior if the value given to upper is less than the value given to upper.

1.2. Full API 187

rmf_traffic, Release 1.0.0

Public Members

ItineraryVersion lower
The ID of the first itinerary change in this range that is missing.

ItineraryVersion upper
The ID of the last itinerary change in this range that is missing.

Class SimpleResponder

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Negotiator.hpp

Inheritance Relationships

Base Type

• public rmf_traffic::schedule::Negotiator::Responder (Class Negotiator::Responder)

Class Documentation

class rmf_traffic::schedule::SimpleResponder : public rmf_traffic::schedule::Negotiator::Responder
A simple implementation of a Negotiator::Responder. It simply passes the result along to the Negotiation.

Public Types

using ApprovalMap = std::unordered_map<Negotiation::ConstTablePtr, std::function<UpdateVersion()>>

using BlockerSet = std::unordered_set<schedule::ParticipantId>

Public Functions

SimpleResponder(const Negotiation::TablePtr &table, std::vector<schedule::ParticipantId> *re-
port_blockers = nullptr)

Constructor

Parameters

• [in] table: The negotiation table that this SimpleResponder is tied to

• [in] report_blockers: If the blockers should be reported when a forfeit is given, provide
a pointer to a vector of ParticipantIds.

SimpleResponder(const Negotiation::TablePtr &table, std::shared_ptr<ApprovalMap> ap-
proval_map, std::shared_ptr<BlockerSet> blockers)

Constructor

Parameters

• [in] table: The negotiation table that this SimpleResponder is tied to

• [in] approval_map: If provided, the responder will store the approval callback in this map

188 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

• [in] blockers: If provided, the responder will store any solution blockers in this set

void submit(PlanId plan_id, std::vector<Route> itinerary, std::function<UpdateVersion)
> approval_callback = nullptr const final

virtual void reject(const Negotiation::Alternatives &alternatives) const final
The negotiator will call this function if it has decided to reject an attempt to negotiate. It must supply a set
of alternatives for the parent negotiator to consider for its next proposal.

virtual void forfeit(const std::vector<ParticipantId> &blockers) const final
The negotiator will call this function if it cannot find any feasible proposal or alternative that can be
accommodated by the parent.

Parameters

• [in] blockers: Give the set of schedule participants that are blocking a solution from being
found.

const std::vector<ParticipantId> &blockers() const
Get the blockers that were reported by the Negotiator, if a forfeit was given.

Public Static Functions

template<typename ...Args>
static inline std::shared_ptr<SimpleResponder> make(Args&&... args)

Class Snappable

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Snapshot.hpp

Inheritance Relationships

Derived Types

• public rmf_traffic::schedule::Database (Class Database)

• public rmf_traffic::schedule::Mirror (Class Mirror)

Class Documentation

class rmf_traffic::schedule::Snappable
This is a pure abstract interface class that can be inherited by any schedule Viewer that wants to be able to
provide a frozen snapshot of its schedule.

Subclassed by rmf_traffic::schedule::Database, rmf_traffic::schedule::Mirror

1.2. Full API 189

rmf_traffic, Release 1.0.0

Public Functions

virtual std::shared_ptr<const Snapshot> snapshot() const = 0
Get a snapshot of the schedule.

virtual ~Snappable() = default

Class Snapshot

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Snapshot.hpp

Inheritance Relationships

Base Type

• public rmf_traffic::schedule::Viewer (Class Viewer)

Class Documentation

class Snapshot : public rmf_traffic::schedule::Viewer

Class StubbornNegotiator

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_StubbornNegotiator.hpp

Inheritance Relationships

Base Type

• public rmf_traffic::schedule::Negotiator (Class Negotiator)

Class Documentation

class rmf_traffic::schedule::StubbornNegotiator : public rmf_traffic::schedule::Negotiator
A StubbornNegotiator will only accept plans that accommodate the current itinerary of the

Public Types

using UpdateVersion = rmf_utils::optional<ItineraryVersion>

190 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Public Functions

StubbornNegotiator(const Participant &participant)
Constructor

StubbornNegotiator(participant).respond(table_view, responder);

Note We take a const-reference to the Participant with the expectation that the Participant instance will
outlive this StubbornNegotiator instance. The StubbornNegotiator costs very little to construct, so it
is okay to use a pattern like

Parameters

• [in] participant: The Participant who wants to be stubborn.

StubbornNegotiator(std::shared_ptr<const Participant> participant)
Owning Constructor

The StubbornNegotiator instance will now hold a shared reference to the participant to ensure it main-
tains its lifetime. This constructor should be used in cases where the StubbornNegotiator instance has a
prolonged lifecycle.

Parameters

• [in] participant: The Participant who wants to be stubborn.

StubbornNegotiator &acceptable_waits(std::vector<Duration> wait_times,
std::function<UpdateVersion)Duration wait_time

> approval_cb = nullptrAdd a set of acceptable wait times.

Parameters

• [in] wait_times: A list of the wait times that would be accepted for negotiation

• [in] approval_cb: A callback that will be triggered when the negotiator decides that you
need to wait for another participant. The callback will receive the chosen wait duration, and is
expected to return the schedule version that will incorporate the given wait time.

StubbornNegotiator &additional_margins(std::vector<rmf_traffic::Duration> margins)
Add some timing margins that will be put into the negotiation submission. This effectively asks other
robots to back off somewhat.

Parameters

• [in] margins: The margins to put into the proposal.

virtual void respond(const schedule::Negotiation::Table::ViewerPtr &table_viewer, const Re-
sponderPtr &responder) final

Have the Negotiator respond to an attempt to negotiate.

Parameters

1.2. Full API 191

rmf_traffic, Release 1.0.0

• [in] table: The Negotiation::Table that is being used for the negotiation.

• [in] responder: The Responder instance that the negotiator should use when a response is
ready.

• [in] interrupt_flag: A pointer to a flag that can be used to interrupt the negotiator if it
has been running for too long. If the planner should run indefinitely, then pass a nullptr.

Class Viewer

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Viewer.hpp

Nested Relationships

Nested Types

• Class Viewer::View

• Struct View::Element

Inheritance Relationships

Derived Types

• public rmf_traffic::schedule::ItineraryViewer (Class ItineraryViewer)

• public rmf_traffic::schedule::Snapshot (Class Snapshot)

Class Documentation

class rmf_traffic::schedule::Viewer
A pure abstract interface class that allows users to query for itineraries that are in a schedule.

This class cannot be instantiated directly. To get a Viewer, you must instantiate an
rmf_traffic::schedule::Database or an rmf_traffic::schedule::Mirror object.

Subclassed by rmf_traffic::schedule::ItineraryViewer, rmf_traffic::schedule::Snapshot

Public Functions

virtual View query(const Query ¶meters) const = 0
Query this Viewer to get a View of the Trajectories inside of it that match the Query parameters.

virtual View query(const Query::Spacetime &spacetime, const Query::Participants &partici-
pants) const = 0

Alternative signature for query()

virtual const std::unordered_set<ParticipantId> &participant_ids() const = 0
Get the set of active participant IDs.

192 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

virtual std::shared_ptr<const ParticipantDescription> get_participant(ParticipantId partic-
ipant_id) const =
0

Get the information of the specified participant if it is available. If a participant with the specified ID is not
registered with the schedule, then this will return a nullptr.

virtual Version latest_version() const = 0
Get the latest version number of this Database.

virtual ~Viewer() = default

class View
A read-only view of some Trajectories in a Database or Mirror.

It is undefined behavior to modify a Database or patch a Mirror while reading Trajectories from this view.
The user of this class is responsible for managing access to reads vs access to writes.

Public Types

using base_iterator = rmf_traffic::detail::bidirectional_iterator<E, I, F>

using const_iterator = base_iterator<const Element, IterImpl, View>

using iterator = const_iterator

Public Functions

const_iterator begin() const
Returns an iterator to the first element of the View.

const_iterator end() const
Returns an iterator to the element following the last element of the View.

std::size_t size() const
Returns the number of elements in this View.

struct Element

Public Members

const ParticipantId participant

const PlanId plan_id

const RouteId route_id

const std::shared_ptr<const Route> route

const ParticipantDescription &description

1.2. Full API 193

rmf_traffic, Release 1.0.0

Class Viewer::View

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Viewer.hpp

Nested Relationships

This class is a nested type of Class Viewer.

Nested Types

• Struct View::Element

Class Documentation

class rmf_traffic::schedule::Viewer::View
A read-only view of some Trajectories in a Database or Mirror.

It is undefined behavior to modify a Database or patch a Mirror while reading Trajectories from this view. The
user of this class is responsible for managing access to reads vs access to writes.

Public Types

using base_iterator = rmf_traffic::detail::bidirectional_iterator<E, I, F>

using const_iterator = base_iterator<const Element, IterImpl, View>

using iterator = const_iterator

Public Functions

const_iterator begin() const
Returns an iterator to the first element of the View.

const_iterator end() const
Returns an iterator to the element following the last element of the View.

std::size_t size() const
Returns the number of elements in this View.

struct Element

Public Members

const ParticipantId participant

const PlanId plan_id

const RouteId route_id

const std::shared_ptr<const Route> route

const ParticipantDescription &description

194 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Class Writer

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Writer.hpp

Nested Relationships

Nested Types

• Class Writer::Registration

Inheritance Relationships

Derived Type

• public rmf_traffic::schedule::Database (Class Database)

Class Documentation

class rmf_traffic::schedule::Writer
A pure abstract interface class that defines an API for writing to the schedule database. This API is implemented
by the Database class, but it should also be implemented for any middleware that intends to have a schedule
participant write changes to a remote database.

Subclassed by rmf_traffic::schedule::Database

Public Types

using ParticipantId = rmf_traffic::schedule::ParticipantId

using ParticipantDescription = rmf_traffic::schedule::ParticipantDescription

using Itinerary = rmf_traffic::schedule::Itinerary

using ItineraryVersion = rmf_traffic::schedule::ItineraryVersion

using ProgressVersion = rmf_traffic::schedule::ProgressVersion

using PlanId = rmf_traffic::PlanId

using Duration = rmf_traffic::Duration

using RouteId = rmf_traffic::RouteId

using CheckpointId = rmf_traffic::CheckpointId

using StorageId = uint64_t

1.2. Full API 195

rmf_traffic, Release 1.0.0

Public Functions

virtual void set(ParticipantId participant, PlanId plan, const Itinerary &itinerary, StorageId stor-
age_base, ItineraryVersion version) = 0

Set a brand new itinerary for a participant. This will replace any itinerary that is already in the schedule
for the participant.

Parameters

• [in] participant: The ID of the participant whose itinerary is being updated.

• [in] plan: The ID of the plan that this new itinerary belongs to.

• [in] itinerary: The new itinerary of the participant.

• [in] storage_base: The storage index offset that the database should use for this plan.
This should generally be the integer number of total routes that the participant has ever given to
the writer prior to setting this new itinerary. This value helps ensure consistent unique IDs for
every route, even after a database has failed over or restarted.

• [in] version: The version for this itinerary change.

virtual void extend(ParticipantId participant, const Itinerary &routes, ItineraryVersion version)
= 0

Add a set of routes to the itinerary of this participant.

Parameters

• [in] participant: The ID of the participant whose itinerary is being updated.

• [in] routes: The set of routes that should be added to the itinerary.

• [in] version: The version for this itinerary change

virtual void delay(ParticipantId participant, Duration delay, ItineraryVersion version) = 0
Add a delay to the itinerary from the specified Time.

Nothing about the routes in the itinerary will be changed except that waypoints will shifted through time.

Parameters

• [in] participant: The ID of the participant whose itinerary is being delayed.

• [in] delay: This is the duration of time to delay all qualifying Trajectory Waypoints.

• [in] version: The version for this itinerary change

virtual void reached(ParticipantId participant, PlanId plan, const std::vector<CheckpointId>
&reached_checkpoints, ProgressVersion version) = 0

Indicate that a participant has reached certain checkpoints.

Parameters

• [in] participant: The ID of the participant whose progress is being set.

• [in] plan: The ID of the plan which progress has been made for.

• [in] reached_checkpoints: The set of checkpoints that have been reached. The indices
in the vector must correspond to the RouteIds of the plan.

196 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

• [in] version: The version number for this progress.

virtual void clear(ParticipantId participant, ItineraryVersion version) = 0
Erase an itinerary from this database.

Parameters

• [in] participant: The ID of the participant whose itinerary is being erased.

• [in] version: The version for this itinerary change

virtual Registration register_participant(ParticipantDescription participant_info) = 0
Register a new participant.

Return result of registering the new participant.

Parameters

• [in] participant_info: Information about the new participant.

• [in] time: The time at which the registration is being requested.

virtual void unregister_participant(ParticipantId participant) = 0
Unregister an existing participant.

Return the new version of the schedule.

Parameters

• [in] participant: The ID of the participant to unregister.

virtual void update_description(ParticipantId participant, ParticipantDescription desc) = 0
Updates a participants footprint

Parameters

• [in] participant: The ID of the participant to update

• [in] desc: The participant description

virtual ~Writer() = default

class Registration
Information resulting from registering a participant.

Public Functions

Registration(ParticipantId id, ItineraryVersion version, PlanId plan_id, StorageId stor-
age_base)

Constructor

Parameters
• [in] id: The ID for the registered participant
• [in] version: The last itinerary version for the registered participant
• [in] plan_id: The last plan_id for the registered participant
• [in] storage_base: The next storage base that the registered participant should use

1.2. Full API 197

rmf_traffic, Release 1.0.0

ParticipantId id() const
The ID of the registered participant.

ItineraryVersion last_itinerary_version() const
The last itinerary version of the registered participant. New Participants will begin by adding up from
this version when issuing schedule updates.

This value might vary for systems that enforce participant uniqueness. If this participant was reg-
istered in the past and is now being re-registered, then the version number will pick up where it
previously left off.

PlanId last_plan_id() const
The last Route ID of the registered participant. New Participants will begin by adding up from this
Route ID when issuing new schedule updates.

Similar to last_itinerary_version, this value might vary for systems that enforce participant unique-
ness.

StorageId next_storage_base() const
The next storage base that the participant should use.

Class Writer::Registration

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Writer.hpp

Nested Relationships

This class is a nested type of Class Writer.

Class Documentation

class rmf_traffic::schedule::Writer::Registration
Information resulting from registering a participant.

Public Functions

Registration(ParticipantId id, ItineraryVersion version, PlanId plan_id, StorageId storage_base)
Constructor

Parameters

• [in] id: The ID for the registered participant

• [in] version: The last itinerary version for the registered participant

• [in] plan_id: The last plan_id for the registered participant

• [in] storage_base: The next storage base that the registered participant should use

ParticipantId id() const
The ID of the registered participant.

ItineraryVersion last_itinerary_version() const
The last itinerary version of the registered participant. New Participants will begin by adding up from this
version when issuing schedule updates.

198 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

This value might vary for systems that enforce participant uniqueness. If this participant was registered in
the past and is now being re-registered, then the version number will pick up where it previously left off.

PlanId last_plan_id() const
The last Route ID of the registered participant. New Participants will begin by adding up from this Route
ID when issuing new schedule updates.

Similar to last_itinerary_version, this value might vary for systems that enforce participant uniqueness.

StorageId next_storage_base() const
The next storage base that the participant should use.

Class Trajectory

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Trajectory.hpp

Nested Relationships

Nested Types

• Struct Trajectory::InsertionResult

• Class Trajectory::Waypoint

• Template Class Trajectory::base_iterator

Class Documentation

class rmf_traffic::Trajectory

Public Types

using iterator = base_iterator<Waypoint>

using const_iterator = base_iterator<const Waypoint>

Public Functions

Trajectory()
Create an empty Trajectory.

Trajectory(const Trajectory &other)

Trajectory &operator=(const Trajectory &other)

Trajectory(Trajectory&&) = default

Warning After using the move constructor or move assignment operator, the Trajectory that was moved
from will be unusable until a fresh Trajectory instance is assigned to it (using either the copy or move
constructor). Attempting to use a Trajectory that was moved from will result in a segfault if you do
not assign it a new instance.

Trajectory &operator=(Trajectory&&) = default

1.2. Full API 199

rmf_traffic, Release 1.0.0

InsertionResult insert(Time time, Eigen::Vector3d position, Eigen::Vector3d velocity)
Add a Waypoint to this Trajectory.

The Waypoint will be inserted into the Trajectory according to its time, ensuring correct ordering of all
Waypoints.

InsertionResult insert(const Waypoint &other)
Insert a copy of another Trajectory’s Waypoint into this one.

iterator find(Time time)
Find the Waypoint of this Trajectory that comes after or exactly on the given time.

Note This will return Trajectory::end() if the time is before the Trajectory starts or after the Trajectory
finishes.

Return an iterator to the Waypoint that is active during the given time, or Trajectory::end() if the time
falls outside the range of the Trajectory

Parameters

• [in] time: The time of interest.

const_iterator find(Time time) const
const-qualified version of find()

Waypoint &operator[](std::size_t index)
Get a reference to the Waypoint at the specified index. No bounds checking is performed, so there will be
undefined behavior if the index is out of bounds.

const Waypoint &operator[](std::size_t index) const
Const-qualified index operator.

Waypoint &at(std::size_t index)
Get a reference to the Waypoint at the specified index. Bound checking will be performed, and an exception
will be thrown if index is out of bounds.

const Waypoint &at(std::size_t index) const
Const-qualified at()

iterator lower_bound(Time time)
Get the first waypoint of this Trajectory that occurs at a time greater than or equal to the specified time.
This is effectively the same as find(Time), except it will return Trajectory::begin() if the time comes before
the start of the Trajectory.

Return an iterator to the first Waypoint that occurs at a time on or after the given time, or Trajectory::end()
if the time is after the end of the Trajectory.

Parameters

• [in] time: The inclusive lower bound on the time of interest.

const_iterator lower_bound(Time time) const
const-qualified version of lower_bound()

std::size_t index_after(Time time) const
Get the index of first waypoint that comes after the specified time. If the last waypoint in the trajectory
comes before the specified time then size() will be returned.

iterator erase(iterator waypoint)
Erase the specified waypoint.

200 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Return an iterator following the last removed element

iterator erase(iterator first, iterator last)
Erase the range of elements: [first, last).

Note The last element is not included in the range.

Return an iterator following the last removed element

iterator begin()
Returns an iterator to the fist Waypoint of the Trajectory.

If the Trajectory is empty, the returned iterator will be equal to end().

const_iterator begin() const
const-qualified version of begin()

const_iterator cbegin() const
Explicitly call the const-qualified version of begin()

iterator end()
Returns an iterator to the element following the last Waypoint of the Trajectory. This iterator acts as a
placeholder; attempting to dereference it results in undefined behavior.

Note In compliance with C++ standards, this is really a one-past-the-end iterator and must not be deref-
erenced. It should only be used to identify when an iteration must end. See: https://en.cppreference.
com/w/cpp/container/list/end

const_iterator end() const
const-qualified version of end()

const_iterator cend() const
Explicitly call the const-qualified version of end()

Waypoint &front()
Get a mutable reference to the first Waypoint in this Trajectory.

Warning Calling this function on an empty trajectory is undefined.

const Waypoint &front() const
Get a const reference to the first Waypoint in this Trajectory.

Warning Calling this function on an empty trajectory is undefined.

Waypoint &back()
Get a mutable reference to the last Waypoint in this Trajectory.

Warning Calling this function on an empty trajectory is undefined.

const Waypoint &back() const
Get a const reference to the last Waypoint in this Trajectory.

Warning Calling this function on an empty trajectory is undefined.

1.2. Full API 201

https://en.cppreference.com/w/cpp/container/list/end
https://en.cppreference.com/w/cpp/container/list/end

rmf_traffic, Release 1.0.0

const Time *start_time() const
Get the start time, if available. This will return a nullptr if the Trajectory is empty.

const Time *finish_time() const
Get the finish time of the Trajectory, if available. This will return a nullptr if the Trajectory is empty.

Duration duration() const
Get the duration of the Trajectory. This will be 0 if the Trajectory is empty or if it has only one Waypoint.

std::size_t size() const
Get the number of Waypoints in the Trajectory. To be used in conflict detection, the Trajectory must have
a size of at least 2.

bool empty() const
Return true if the trajectory has no waypoints, false otherwise.

Friends

friend class internal::TrajectoryIteratorImplementation

template<typename W>
class base_iterator

Public Functions

W &operator*() const
Dereference operator.

W *operator->() const
Drill-down operator.

base_iterator &operator++()
Pre-increment operator: ++it

Note This is more efficient than the post-increment operator.
Return a reference to the iterator that was operated on

base_iterator &operator--()
Pre-decrement operator: it

Note This is more efficient than the post-decrement operator
Return a reference to the iterator that was operated on

base_iterator operator++(int)
Post-increment operator: it++

Return a copy of the iterator before it was incremented

base_iterator operator--(int)
Post-decrement operator: it

Return a copy of the iterator before it was decremented

bool operator==(const base_iterator &other) const
Equality comparison operator.

202 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

bool operator!=(const base_iterator &other) const
Inequality comparison operator.

bool operator<(const base_iterator &other) const
Less-than comparison operator (the left-hand side is earlier in the trajectory than the right-hand side)

bool operator>(const base_iterator &other) const
Greater-than comparison operator (the left-hand side is later in the trajectory than the right-hand side)

bool operator<=(const base_iterator &other) const
Less-than-or-equal comparison operator.

bool operator>=(const base_iterator &other) const
Greater-than-or-equal comparison operator.

operator const_iterator() const

base_iterator(const base_iterator &other) = default

base_iterator(base_iterator &&other) = default

base_iterator &operator=(const base_iterator &other) = default

base_iterator &operator=(base_iterator &&other) = default

base_iterator()

Friends

friend class internal::TrajectoryIteratorImplementation

struct InsertionResult

Public Members

iterator it

bool inserted

class Waypoint

Public Functions

Eigen::Vector3d position() const
Get the intended physical location of the robot at the end of this Trajectory Waypoint.

This is a 2D homogeneous position. The first two values in the vector are x and y coordinates, while
the third is rotation about the z-axis.

Waypoint &position(Eigen::Vector3d new_position)
Set the intended physical location of the robot at the end of this Trajectory Waypoint.

This is a 2D homogeneous position. The first two values in the vector are x and y coordinates, while
the third is rotation about the z-axis.

Parameters
• [in] new_position: The new position for this Trajectory Waypoint.

1.2. Full API 203

rmf_traffic, Release 1.0.0

Eigen::Vector3d velocity() const
Get the intended velocity of the robot at the end of this Trajectory Waypoint.

This is a 2D homogeneous position. The first two values in the vector are x and y velocities, while the
third is rotational velocity about the z-axis.

Waypoint &velocity(Eigen::Vector3d new_velocity)
Set the intended velocity of the robot at the end of this Trajectory Waypoint.

This is a 2D homogeneous position. The first two values in the vector are x and y coordinates, while
the third is rotation about the z-axis.

Parameters
• [in] new_velocity: The new velocity at this Trajectory Waypoint.

Time time() const
Get the time that the trajectory will reach this Waypoint.

std::size_t index() const
The index of this waypoint within its trajectory. Waypoints are indexed according to their chronolog-
ical order. Adjusting the time of any waypoint in a trajectory could change its index and/or the index
of other waypoints.

Waypoint &change_time(Time new_time)
Change the timing of this Trajectory Waypoint. Note that this function will only affect this waypoint,
and may cause this waypoint to be reordered within the Trajectory.

To change the timing for this waypoint while preserving the relative times of all subsequent Trajectory
Waypoints, use adjust_times() instead.

Warning If you change the time value of this Waypoint such that it falls directly on another Way-
point’s time, you will get a std::invalid_argument exception, because discontinuous jumps are not
supported, and indicate a significant mishandling of trajectory data, which is most likely a serious
bug that should be remedied.

Note If this Waypoint’s time crosses over another Waypoint’s time, that signficantly changes the topol-
ogy of the Trajectory, because it will change the order in which the positions are traversed.

See adjust_times(Time new_time)
Parameters

• [in] new_time: The new timing for this Trajectory Waypoint.

void adjust_times(Duration delta_t)
Adjust the timing of this waypoint and all subsequent waypoints by the given duration. This is guar-
anteed to maintain the ordering of the Trajectory Waypoints, and is more efficient than changing all
the times directly.

Warning If a negative delta_t is given, it must not cause this Waypoint’s time to be less than or equal
to the time of its preceding Waypoint, or else a std::invalid_argument exception will be thrown.

See change_time(Time new_time)
Parameters

• [in] delta_t: How much to change the timing of this waypoint and all later way-
points. If negative, it must not cross over the time of the previous waypoint, or else a
std::invalid_argument will be thrown.

204 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Template Class Trajectory::base_iterator

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Trajectory.hpp

Nested Relationships

This class is a nested type of Class Trajectory.

Class Documentation

template<typename W>
class rmf_traffic::Trajectory::base_iterator

Public Functions

W &operator*() const
Dereference operator.

W *operator->() const
Drill-down operator.

base_iterator &operator++()
Pre-increment operator: ++it

Note This is more efficient than the post-increment operator.

Return a reference to the iterator that was operated on

base_iterator &operator--()
Pre-decrement operator: it

Note This is more efficient than the post-decrement operator

Return a reference to the iterator that was operated on

base_iterator operator++(int)
Post-increment operator: it++

Return a copy of the iterator before it was incremented

base_iterator operator--(int)
Post-decrement operator: it

Return a copy of the iterator before it was decremented

bool operator==(const base_iterator &other) const
Equality comparison operator.

bool operator!=(const base_iterator &other) const
Inequality comparison operator.

1.2. Full API 205

rmf_traffic, Release 1.0.0

bool operator<(const base_iterator &other) const
Less-than comparison operator (the left-hand side is earlier in the trajectory than the right-hand side)

bool operator>(const base_iterator &other) const
Greater-than comparison operator (the left-hand side is later in the trajectory than the right-hand side)

bool operator<=(const base_iterator &other) const
Less-than-or-equal comparison operator.

bool operator>=(const base_iterator &other) const
Greater-than-or-equal comparison operator.

operator const_iterator() const

base_iterator(const base_iterator &other) = default

base_iterator(base_iterator &&other) = default

base_iterator &operator=(const base_iterator &other) = default

base_iterator &operator=(base_iterator &&other) = default

base_iterator()

Friends

friend class internal::TrajectoryIteratorImplementation

Class Trajectory::Waypoint

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Trajectory.hpp

Nested Relationships

This class is a nested type of Class Trajectory.

Class Documentation

class rmf_traffic::Trajectory::Waypoint

Public Functions

Eigen::Vector3d position() const
Get the intended physical location of the robot at the end of this Trajectory Waypoint.

This is a 2D homogeneous position. The first two values in the vector are x and y coordinates, while the
third is rotation about the z-axis.

Waypoint &position(Eigen::Vector3d new_position)
Set the intended physical location of the robot at the end of this Trajectory Waypoint.

This is a 2D homogeneous position. The first two values in the vector are x and y coordinates, while the
third is rotation about the z-axis.

Parameters

206 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

• [in] new_position: The new position for this Trajectory Waypoint.

Eigen::Vector3d velocity() const
Get the intended velocity of the robot at the end of this Trajectory Waypoint.

This is a 2D homogeneous position. The first two values in the vector are x and y velocities, while the
third is rotational velocity about the z-axis.

Waypoint &velocity(Eigen::Vector3d new_velocity)
Set the intended velocity of the robot at the end of this Trajectory Waypoint.

This is a 2D homogeneous position. The first two values in the vector are x and y coordinates, while the
third is rotation about the z-axis.

Parameters

• [in] new_velocity: The new velocity at this Trajectory Waypoint.

Time time() const
Get the time that the trajectory will reach this Waypoint.

std::size_t index() const
The index of this waypoint within its trajectory. Waypoints are indexed according to their chronological
order. Adjusting the time of any waypoint in a trajectory could change its index and/or the index of other
waypoints.

Waypoint &change_time(Time new_time)
Change the timing of this Trajectory Waypoint. Note that this function will only affect this waypoint, and
may cause this waypoint to be reordered within the Trajectory.

To change the timing for this waypoint while preserving the relative times of all subsequent Trajectory
Waypoints, use adjust_times() instead.

Warning If you change the time value of this Waypoint such that it falls directly on another Waypoint’s
time, you will get a std::invalid_argument exception, because discontinuous jumps are not supported,
and indicate a significant mishandling of trajectory data, which is most likely a serious bug that should
be remedied.

Note If this Waypoint’s time crosses over another Waypoint’s time, that signficantly changes the topology
of the Trajectory, because it will change the order in which the positions are traversed.

See adjust_times(Time new_time)

Parameters

• [in] new_time: The new timing for this Trajectory Waypoint.

void adjust_times(Duration delta_t)
Adjust the timing of this waypoint and all subsequent waypoints by the given duration. This is guaranteed
to maintain the ordering of the Trajectory Waypoints, and is more efficient than changing all the times
directly.

Warning If a negative delta_t is given, it must not cause this Waypoint’s time to be less than or equal to
the time of its preceding Waypoint, or else a std::invalid_argument exception will be thrown.

See change_time(Time new_time)

Parameters

1.2. Full API 207

rmf_traffic, Release 1.0.0

• [in] delta_t: How much to change the timing of this waypoint and all later waypoints. If
negative, it must not cross over the time of the previous waypoint, or else a std::invalid_argument
will be thrown.

1.2.3 Functions

Function rmf_traffic::agv::compute_plan_starts

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Planner.hpp

Function Documentation

std::vector<Plan::Start> rmf_traffic::agv::compute_plan_starts(const
rmf_traffic::agv::Graph
&graph, const std::string
&map_name, const
Eigen::Vector3d pose,
const rmf_traffic::Time
start_time, const double
max_merge_waypoint_distance
= 0.1, const double
max_merge_lane_distance
= 1.0, const double
min_lane_length = 1e-8)

Produces a set of possible starting waypoints and lanes in order to start planning. This method attempts to
find the most suitable starting nodes within the provided graph for merging, planning and execution of plans,
from the provided pose. If none of the waypoints in the graph fulfils the requirements, an empty vector will be
returned.

Parameters

• [in] graph: Graph which the starting waypoints and lanes will be derived from.

• [in] pose: Current pose in terms of 2D coordinates, x and y, being the first and second element
respectively, while the third element being the yaw.

• [in] start_time: The starting time that will be attributed to all the generated starts to compute
a new plan. In some occasions, users will want to add small delays to the current time, in order to
account for computation time or network delays.

• [in] max_merge_waypoint_distance: The maximum distance allowed to automatically
merge onto a waypoint in the graph. Default value as 0.1 meters.

• [in] max_merge_lane_distance: The maximum distance allowed to automatically merge
onto a lane, i.e. adding the lane’s entry and exit waypoints as potential starts. Default value as 1.0
meters.

• [in] min_lane_length: The minimum length of a lane in the provided graph to be considered
valid, any lanes shorter than this value will not be evaluated. Default value as 1e-8 meters.

208 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Function rmf_traffic::agv::interpolate_time_along_quadratic_straight_line

• Defined in file_latest_rmf_traffic_include_rmf_traffic_agv_Interpolate.hpp

Function Documentation

TimeVelocity rmf_traffic::agv::interpolate_time_along_quadratic_straight_line(const
Tra-
jec-
tory
&tra-
jec-
tory,
const
Eigen::Vector2d
&po-
si-
tion,
dou-
ble
hold-
ing_point_tolerance
=
0.05)

This function only works correctly if the trajectory follows a straight line trajectory with zero jerk (cubic coef-
ficient) and the position lies along the trajectory.

Function rmf_traffic::blockade::make_participant

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Participant.hpp

Function Documentation

Participant rmf_traffic::blockade::make_participant(ParticipantId participant_id, double
radius, std::shared_ptr<Writer> writer,
std::shared_ptr<RectificationRequesterFactory>
rectifier_factory = nullptr)

Make a blockade participant.

Parameters

• [in] participant_id: Every blockade participant must also be a schedule participant. Pass in
the schedule participant ID here.

• [in] radius: The initial default radius to use for this participant’s blockade.

• [in] writer: The writer that this participant should interact with.

• [in] rectifier_factory: The factory that this participant should use to create a rectifier for
itself. If no factory is provided, we will assume the writer is always perfectly reliable.

1.2. Full API 209

rmf_traffic, Release 1.0.0

Template Function rmf_traffic::geometry::make_final(Args&&. . .)

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_Shape.hpp

Function Documentation

template<typename T, typename ...Args>
FinalShapePtr rmf_traffic::geometry::make_final(Args&&... args)

Template Function rmf_traffic::geometry::make_final(const T&)

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_Shape.hpp

Function Documentation

template<typename T>
FinalShapePtr rmf_traffic::geometry::make_final(const T &shape)

Template Function rmf_traffic::geometry::make_final_convex(Args&&. . .)

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_ConvexShape.hpp

Function Documentation

template<typename T, typename ...Args>
FinalConvexShapePtr rmf_traffic::geometry::make_final_convex(Args&&... args)

Template Function rmf_traffic::geometry::make_final_convex(const T&)

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_ConvexShape.hpp

Function Documentation

template<typename T>
FinalConvexShapePtr rmf_traffic::geometry::make_final_convex(const T &convex)

Function rmf_traffic::geometry::operator!=(const Circle&, const Circle&)

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_Circle.hpp

210 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Function Documentation

bool rmf_traffic::geometry::operator!=(const Circle &lhs, const Circle &rhs)
Non-equality operator for Circle objects.

Parameters

• [in] lhs: A const reference to the left-hand-side of the comparison.

• [in] rhs: A const reference to the right-hand-side of the comparison.

Function rmf_traffic::geometry::operator!=(const Space&, const Space&)

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_Space.hpp

Function Documentation

bool rmf_traffic::geometry::operator!=(const Space &lhs, const Space &rhs)
Non-equality operator for Space objects.

Parameters

• [in] lhs: A const reference to the left-hand-side of the comparison.

• [in] rhs: A const reference to the right-hand-side of the comparison.

Function rmf_traffic::geometry::operator==(const Circle&, const Circle&)

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_Circle.hpp

Function Documentation

bool rmf_traffic::geometry::operator==(const Circle &lhs, const Circle &rhs)
Equality operator for Circle objects.

Parameters

• [in] lhs: A const reference to the left-hand-side of the comparison.

• [in] rhs: A const reference to the right-hand-side of the comparison.

1.2. Full API 211

rmf_traffic, Release 1.0.0

Function rmf_traffic::geometry::operator==(const Space&, const Space&)

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_Space.hpp

Function Documentation

bool rmf_traffic::geometry::operator==(const Space &lhs, const Space &rhs)
Equality operator for Space objects.

Parameters

• [in] lhs: A const reference to the left-hand-side of the comparison.

• [in] rhs: A const reference to the right-hand-side of the comparison.

Function rmf_traffic::operator!=

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Region.hpp

Function Documentation

bool rmf_traffic::operator!=(const Region &lhs, const Region &rhs)
Non-equality operator for Region objects.

Parameters

• [in] lhs: A const reference to the left-hand-side of the comparison.

• [in] rhs: A const reference to the right-hand-side of the comparison.

Function rmf_traffic::operator==

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Region.hpp

Function Documentation

bool rmf_traffic::operator==(const Region &lhs, const Region &rhs)
Equality operator for Region objects.

Parameters

• [in] lhs: A const reference to the left-hand-side of the comparison.

• [in] rhs: A const reference to the right-hand-side of the comparison.

212 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Function rmf_traffic::schedule::make_query(std::vector<Region>)

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Query.hpp

Function Documentation

Query rmf_traffic::schedule::make_query(std::vector<Region> regions)
Query for all Trajectories that intersect with this set of spacetime regions.

Parameters

• [in] regions: Only query Trajectories that intersect with the specified regions.

Function rmf_traffic::schedule::make_query(std::vector<std::string>, const Time *, const Time *)

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Query.hpp

Function Documentation

Query rmf_traffic::schedule::make_query(std::vector<std::string> maps, const Time
*start_time, const Time *finish_time)

Query for all Trajectories that fall within a time range.

Parameters

• [in] start_time: A pointer to the lower bound for the time range. Pass in a nullptr to indicate
that there is no lower bound.

• [in] finish_time: A pointer to the upper bound for the time range. Pass in a nullptr to indicate
that there is no upper bound.

Function rmf_traffic::schedule::operator!=

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Query.hpp

Function Documentation

bool rmf_traffic::schedule::operator!=(const Query &lhs, const Query &rhs)
Non-equality operator for Query objects.

Parameters

• [in] lhs: A const reference to the left-hand-side of the comparison.

• [in] rhs: A const reference to the right-hand-side of the comparison.

1.2. Full API 213

rmf_traffic, Release 1.0.0

Function rmf_traffic::schedule::operator==

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Query.hpp

Function Documentation

bool rmf_traffic::schedule::operator==(const Query &lhs, const Query &rhs)
Equality operator for Query objects.

Parameters

• [in] lhs: A const reference to the left-hand-side of the comparison.

• [in] rhs: A const reference to the right-hand-side of the comparison.

Function rmf_traffic::schedule::query_all

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Query.hpp

Function Documentation

Query rmf_traffic::schedule::query_all()
Query for all entries in a schedule database.

Function rmf_traffic::time::apply_offset

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Time.hpp

Function Documentation

Time rmf_traffic::time::apply_offset(Time start_time, double delta_seconds)
Return the given start_time, offset by the number of seconds given.

Parameters

• [in] start_time: The time to start from

• [in] delta_seconds: The number of seconds to add to the start_time

Function rmf_traffic::time::from_seconds

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Time.hpp

214 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Function Documentation

Duration rmf_traffic::time::from_seconds(double delta_t)
Chance the given duration from a double-precision floating-point representation to a nanosecond count.

Function rmf_traffic::time::to_seconds

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Time.hpp

Function Documentation

double rmf_traffic::time::to_seconds(Duration delta_t)
Change the given duration from a nanosecond count to a double-precision floating-point representation in sec-
onds.

1.2.4 Defines

Define CAPTURE_LEAK

• Defined in file_latest_rmf_traffic_include_rmf_traffic_debug_Plumber.hpp

Define Documentation

CAPTURE_LEAK(X)

Define CAPTURE_LEAK_HERE

• Defined in file_latest_rmf_traffic_include_rmf_traffic_debug_Plumber.hpp

Define Documentation

CAPTURE_LEAK_HERE

Define CHECK_LEAK

• Defined in file_latest_rmf_traffic_include_rmf_traffic_debug_Plumber.hpp

Define Documentation

CHECK_LEAK(X)

1.2. Full API 215

rmf_traffic, Release 1.0.0

1.2.5 Typedefs

Typedef rmf_traffic::blockade::CheckpointId

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Status.hpp

Typedef Documentation

using rmf_traffic::blockade::CheckpointId = uint64_t

Typedef rmf_traffic::blockade::ParticipantId

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Status.hpp

Typedef Documentation

using rmf_traffic::blockade::ParticipantId = uint64_t

Typedef rmf_traffic::blockade::ReservationId

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Status.hpp

Typedef Documentation

using rmf_traffic::blockade::ReservationId = uint64_t

Typedef rmf_traffic::blockade::Version

• Defined in file_latest_rmf_traffic_include_rmf_traffic_blockade_Status.hpp

Typedef Documentation

using rmf_traffic::blockade::Version = uint64_t

Typedef rmf_traffic::CheckpointId

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Route.hpp

216 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Typedef Documentation

using rmf_traffic::CheckpointId = uint64_t

Typedef rmf_traffic::ConstRoutePtr

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Route.hpp

Typedef Documentation

using rmf_traffic::ConstRoutePtr = std::shared_ptr<const Route>

Typedef rmf_traffic::Dependencies

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Route.hpp

Typedef Documentation

using rmf_traffic::Dependencies = std::vector<Dependency>

Typedef rmf_traffic::DependsOnCheckpoint

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Route.hpp

Typedef Documentation

using rmf_traffic::DependsOnCheckpoint = std::map<CheckpointId, CheckpointId>
The checkpoint in the value waits for the checkpoint in the key.

Typedef rmf_traffic::DependsOnParticipant

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Route.hpp

Typedef Documentation

using rmf_traffic::DependsOnParticipant = std::unordered_map<ParticipantId, DependsOnPlan>
Express a dependency on a participant.

1.2. Full API 217

rmf_traffic, Release 1.0.0

Typedef rmf_traffic::DependsOnRoute

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Route.hpp

Typedef Documentation

using rmf_traffic::DependsOnRoute = std::unordered_map<RouteId, DependsOnCheckpoint>
The checkpoint dependencies relate to the route ID of the key.

Typedef rmf_traffic::Duration

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Time.hpp

Typedef Documentation

using rmf_traffic::Duration = std::chrono::steady_clock::duration
Specifies a change in time, with nanosecond precision.

Typedef rmf_traffic::geometry::ConstConvexShapePtr

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_ConvexShape.hpp

Typedef Documentation

using rmf_traffic::geometry::ConstConvexShapePtr = std::shared_ptr<const ConvexShape>

Typedef rmf_traffic::geometry::ConstFinalConvexShapePtr

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_ConvexShape.hpp

Typedef Documentation

using rmf_traffic::geometry::ConstFinalConvexShapePtr = std::shared_ptr<const FinalConvexShape>

Typedef rmf_traffic::geometry::ConstFinalShapePtr

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_Shape.hpp

218 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Typedef Documentation

using rmf_traffic::geometry::ConstFinalShapePtr = std::shared_ptr<const FinalShape>

Typedef rmf_traffic::geometry::ConstShapePtr

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_Shape.hpp

Typedef Documentation

using rmf_traffic::geometry::ConstShapePtr = std::shared_ptr<const Shape>

Typedef rmf_traffic::geometry::ConvexShapePtr

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_ConvexShape.hpp

Typedef Documentation

using rmf_traffic::geometry::ConvexShapePtr = std::shared_ptr<ConvexShape>

Typedef rmf_traffic::geometry::FinalConvexShapePtr

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_ConvexShape.hpp

Typedef Documentation

using rmf_traffic::geometry::FinalConvexShapePtr = std::shared_ptr<FinalConvexShape>

Typedef rmf_traffic::geometry::FinalShapePtr

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_Shape.hpp

Typedef Documentation

using rmf_traffic::geometry::FinalShapePtr = std::shared_ptr<FinalShape>

Typedef rmf_traffic::geometry::ShapePtr

• Defined in file_latest_rmf_traffic_include_rmf_traffic_geometry_Shape.hpp

1.2. Full API 219

rmf_traffic, Release 1.0.0

Typedef Documentation

using rmf_traffic::geometry::ShapePtr = std::shared_ptr<Shape>

Typedef rmf_traffic::ParticipantId

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Route.hpp

Typedef Documentation

using rmf_traffic::ParticipantId = uint64_t

Typedef rmf_traffic::PlanId

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Route.hpp

Typedef Documentation

using rmf_traffic::PlanId = uint64_t

Typedef rmf_traffic::RouteId

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Route.hpp

Typedef Documentation

using rmf_traffic::RouteId = uint64_t

Typedef rmf_traffic::RoutePtr

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Route.hpp

Typedef Documentation

using rmf_traffic::RoutePtr = std::shared_ptr<Route>

Typedef rmf_traffic::schedule::Itinerary

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Itinerary.hpp

220 Chapter 1. rmf_traffic API

rmf_traffic, Release 1.0.0

Typedef Documentation

using rmf_traffic::schedule::Itinerary = std::vector<Route>

Typedef rmf_traffic::schedule::ItineraryVersion

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Itinerary.hpp

Typedef Documentation

using rmf_traffic::schedule::ItineraryVersion = uint64_t

Typedef rmf_traffic::schedule::ItineraryView

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Itinerary.hpp

Typedef Documentation

using rmf_traffic::schedule::ItineraryView = std::vector<std::shared_ptr<const Route>>

Typedef rmf_traffic::schedule::ParticipantDescriptionsMap

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_ParticipantDescription.hpp

Typedef Documentation

using rmf_traffic::schedule::ParticipantDescriptionsMap = std::unordered_map<ParticipantId, ParticipantDescription>

Typedef rmf_traffic::schedule::ParticipantId

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_ParticipantDescription.hpp

Typedef Documentation

using rmf_traffic::schedule::ParticipantId = uint64_t

Typedef rmf_traffic::schedule::ProgressVersion

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Itinerary.hpp

1.2. Full API 221

rmf_traffic, Release 1.0.0

Typedef Documentation

using rmf_traffic::schedule::ProgressVersion = uint64_t

Typedef rmf_traffic::schedule::StorageId

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Change.hpp

Typedef Documentation

using rmf_traffic::schedule::StorageId = uint64_t

Typedef rmf_traffic::schedule::Version

• Defined in file_latest_rmf_traffic_include_rmf_traffic_schedule_Version.hpp

Typedef Documentation

using rmf_traffic::schedule::Version = uint64_t
The schedule version is represented by an unsigned 64-bit integer. This means that the schedule can identify
over 9 quintillion database entries at any single moment in time (which is more than a server is likely to have
enough RAM to store).

The Version number is used to identify the current version of a database.

As database entries become irrelevant (e.g. they refer to events that have already finished taking place) they will
be culled from the database. The database will keep track of what its “oldest” known version number is. After
a very long period of continuous operation, the version numbers could eventually wrap around and overflow
the 64-bit unsigned integer. This is okay because modular arithmetic will be used to ensure that version values
which are lower than the “oldest” version number will be evaluated as greater than any version numbers that are
greater than the “oldest” version number.

Typedef rmf_traffic::Time

• Defined in file_latest_rmf_traffic_include_rmf_traffic_Time.hpp

Typedef Documentation

using rmf_traffic::Time = std::chrono::steady_clock::time_point
Specifies a specific point in time, with nanosecond precision.

Conventionally this will be represented relative to the Unix Epoch.

222 Chapter 1. rmf_traffic API

INDEX

C
CAPTURE_LEAK (C macro), 215
CAPTURE_LEAK_HERE (C macro), 215
CHECK_LEAK (C macro), 215

R
rmf_traffic::agv::CentralizedNegotiation

(C++ class), 24
rmf_traffic::agv::CentralizedNegotiation::Agent

(C++ class), 25, 27
rmf_traffic::agv::CentralizedNegotiation::Agent::Agent

(C++ function), 25, 27
rmf_traffic::agv::CentralizedNegotiation::Agent::goal

(C++ function), 26, 28
rmf_traffic::agv::CentralizedNegotiation::Agent::id

(C++ function), 26, 28
rmf_traffic::agv::CentralizedNegotiation::Agent::options

(C++ function), 26, 28
rmf_traffic::agv::CentralizedNegotiation::Agent::planner

(C++ function), 26, 28
rmf_traffic::agv::CentralizedNegotiation::Agent::starts

(C++ function), 26, 28
rmf_traffic::agv::CentralizedNegotiation::CentralizedNegotiation

(C++ function), 25
rmf_traffic::agv::CentralizedNegotiation::log

(C++ function), 25
rmf_traffic::agv::CentralizedNegotiation::optimal

(C++ function), 25
rmf_traffic::agv::CentralizedNegotiation::print

(C++ function), 25
rmf_traffic::agv::CentralizedNegotiation::Proposal

(C++ type), 24
rmf_traffic::agv::CentralizedNegotiation::Result

(C++ class), 26, 28
rmf_traffic::agv::CentralizedNegotiation::Result::blockers

(C++ function), 26, 29
rmf_traffic::agv::CentralizedNegotiation::Result::log

(C++ function), 26, 29
rmf_traffic::agv::CentralizedNegotiation::Result::proposal

(C++ function), 26, 29
rmf_traffic::agv::CentralizedNegotiation::solve

(C++ function), 25

rmf_traffic::agv::CentralizedNegotiation::viewer
(C++ function), 25

rmf_traffic::agv::compute_plan_starts
(C++ function), 208

rmf_traffic::agv::Graph (C++ class), 30
rmf_traffic::agv::Graph::add_key (C++

function), 30
rmf_traffic::agv::Graph::add_lane (C++

function), 30
rmf_traffic::agv::Graph::add_waypoint

(C++ function), 30
rmf_traffic::agv::Graph::find_waypoint

(C++ function), 30
rmf_traffic::agv::Graph::get_lane (C++

function), 30
rmf_traffic::agv::Graph::get_waypoint

(C++ function), 30
rmf_traffic::agv::Graph::Graph (C++ func-

tion), 30
rmf_traffic::agv::Graph::keys (C++ func-

tion), 30
rmf_traffic::agv::Graph::Lane (C++ class),

31, 39
rmf_traffic::agv::Graph::Lane::Dock

(C++ class), 31, 39, 44
rmf_traffic::agv::Graph::Lane::Dock::Dock

(C++ function), 32, 39, 44
rmf_traffic::agv::Graph::Lane::Dock::dock_name

(C++ function), 32, 39, 44
rmf_traffic::agv::Graph::Lane::Dock::duration

(C++ function), 32, 39, 44
rmf_traffic::agv::Graph::Lane::Door

(C++ class), 32, 40, 45
rmf_traffic::agv::Graph::Lane::Door::Door

(C++ function), 32, 40, 45
rmf_traffic::agv::Graph::Lane::Door::duration

(C++ function), 32, 40, 45
rmf_traffic::agv::Graph::Lane::Door::name

(C++ function), 32, 40, 45
rmf_traffic::agv::Graph::Lane::DoorClose

(C++ class), 32, 40, 46
rmf_traffic::agv::Graph::Lane::DoorOpen

223

rmf_traffic, Release 1.0.0

(C++ class), 32, 40, 46
rmf_traffic::agv::Graph::Lane::entry

(C++ function), 31, 39
rmf_traffic::agv::Graph::Lane::Event

(C++ class), 32, 40, 46
rmf_traffic::agv::Graph::Lane::Event::~Event

(C++ function), 33, 40, 47
rmf_traffic::agv::Graph::Lane::Event::clone

(C++ function), 33, 40, 47
rmf_traffic::agv::Graph::Lane::Event::duration

(C++ function), 33, 40, 47
rmf_traffic::agv::Graph::Lane::Event::execute

(C++ function), 33, 40, 47
rmf_traffic::agv::Graph::Lane::Event::make

(C++ function), 33, 41, 47
rmf_traffic::agv::Graph::Lane::EventPtr

(C++ type), 31, 39
rmf_traffic::agv::Graph::Lane::Executor

(C++ class), 33, 41, 47
rmf_traffic::agv::Graph::Lane::Executor::~Executor

(C++ function), 34, 41, 48
rmf_traffic::agv::Graph::Lane::Executor::Dock

(C++ type), 33, 41, 48
rmf_traffic::agv::Graph::Lane::Executor::DoorClose

(C++ type), 33, 41, 48
rmf_traffic::agv::Graph::Lane::Executor::DoorOpen

(C++ type), 33, 41, 48
rmf_traffic::agv::Graph::Lane::Executor::execute

(C++ function), 34, 41, 48
rmf_traffic::agv::Graph::Lane::Executor::LiftDoorOpen

(C++ type), 33, 41, 48
rmf_traffic::agv::Graph::Lane::Executor::LiftMove

(C++ type), 33, 41, 48
rmf_traffic::agv::Graph::Lane::Executor::LiftSessionBegin

(C++ type), 33, 41, 48
rmf_traffic::agv::Graph::Lane::Executor::LiftSessionEnd

(C++ type), 33, 41, 48
rmf_traffic::agv::Graph::Lane::Executor::Wait

(C++ type), 33, 41, 48
rmf_traffic::agv::Graph::Lane::exit

(C++ function), 31, 39
rmf_traffic::agv::Graph::Lane::index

(C++ function), 31, 39
rmf_traffic::agv::Graph::Lane::LiftDoorOpen

(C++ class), 34, 41, 49
rmf_traffic::agv::Graph::Lane::LiftMove

(C++ class), 34, 41, 49
rmf_traffic::agv::Graph::Lane::LiftSession

(C++ class), 34, 41, 50
rmf_traffic::agv::Graph::Lane::LiftSession::duration

(C++ function), 34, 42, 50
rmf_traffic::agv::Graph::Lane::LiftSession::floor_name

(C++ function), 34, 42, 50
rmf_traffic::agv::Graph::Lane::LiftSession::lift_name

(C++ function), 34, 42, 50
rmf_traffic::agv::Graph::Lane::LiftSession::LiftSession

(C++ function), 34, 42, 50
rmf_traffic::agv::Graph::Lane::LiftSessionBegin

(C++ class), 34, 42, 51
rmf_traffic::agv::Graph::Lane::LiftSessionEnd

(C++ class), 34, 42, 51
rmf_traffic::agv::Graph::Lane::Node

(C++ class), 34, 42, 51
rmf_traffic::agv::Graph::Lane::Node::event

(C++ function), 35, 43, 52
rmf_traffic::agv::Graph::Lane::Node::Node

(C++ function), 35, 42, 52
rmf_traffic::agv::Graph::Lane::Node::orientation_constraint

(C++ function), 35, 43, 52
rmf_traffic::agv::Graph::Lane::Node::waypoint_index

(C++ function), 35, 43, 52
rmf_traffic::agv::Graph::Lane::Properties

(C++ class), 35, 43, 53
rmf_traffic::agv::Graph::Lane::properties

(C++ function), 31, 39
rmf_traffic::agv::Graph::Lane::Properties::Properties

(C++ function), 35, 43, 53
rmf_traffic::agv::Graph::Lane::Properties::speed_limit

(C++ function), 35, 43, 53
rmf_traffic::agv::Graph::Lane::Wait

(C++ class), 35, 43, 53
rmf_traffic::agv::Graph::Lane::Wait::duration

(C++ function), 36, 43, 53
rmf_traffic::agv::Graph::Lane::Wait::Wait

(C++ function), 36, 43, 53
rmf_traffic::agv::Graph::lane_from (C++

function), 31
rmf_traffic::agv::Graph::lanes_from

(C++ function), 31
rmf_traffic::agv::Graph::lanes_into

(C++ function), 31
rmf_traffic::agv::Graph::num_lanes (C++

function), 30
rmf_traffic::agv::Graph::num_waypoints

(C++ function), 30
rmf_traffic::agv::Graph::OrientationConstraint

(C++ class), 36, 54
rmf_traffic::agv::Graph::OrientationConstraint::~OrientationConstraint

(C++ function), 36, 54
rmf_traffic::agv::Graph::OrientationConstraint::apply

(C++ function), 36, 54
rmf_traffic::agv::Graph::OrientationConstraint::clone

(C++ function), 36, 54
rmf_traffic::agv::Graph::OrientationConstraint::Direction

(C++ enum), 36, 54
rmf_traffic::agv::Graph::OrientationConstraint::Direction::Backward

(C++ enumerator), 36, 54
rmf_traffic::agv::Graph::OrientationConstraint::Direction::Forward

224 Index

rmf_traffic, Release 1.0.0

(C++ enumerator), 36, 54
rmf_traffic::agv::Graph::OrientationConstraint::make

(C++ function), 37, 55
rmf_traffic::agv::Graph::remove_key

(C++ function), 30
rmf_traffic::agv::Graph::set_key (C++

function), 30
rmf_traffic::agv::Graph::Waypoint (C++

class), 37, 55
rmf_traffic::agv::Graph::Waypoint::get_location

(C++ function), 37, 55
rmf_traffic::agv::Graph::Waypoint::get_map_name

(C++ function), 37, 55
rmf_traffic::agv::Graph::Waypoint::index

(C++ function), 37, 56
rmf_traffic::agv::Graph::Waypoint::is_charger

(C++ function), 37, 55
rmf_traffic::agv::Graph::Waypoint::is_holding_point

(C++ function), 37, 55
rmf_traffic::agv::Graph::Waypoint::is_parking_spot

(C++ function), 37, 55
rmf_traffic::agv::Graph::Waypoint::is_passthrough_point

(C++ function), 37, 55
rmf_traffic::agv::Graph::Waypoint::name

(C++ function), 37, 56
rmf_traffic::agv::Graph::Waypoint::name_or_index

(C++ function), 38, 56
rmf_traffic::agv::Graph::Waypoint::set_charger

(C++ function), 37, 56
rmf_traffic::agv::Graph::Waypoint::set_holding_point

(C++ function), 37, 55
rmf_traffic::agv::Graph::Waypoint::set_location

(C++ function), 37, 55
rmf_traffic::agv::Graph::Waypoint::set_map_name

(C++ function), 37, 55
rmf_traffic::agv::Graph::Waypoint::set_parking_spot

(C++ function), 37, 55
rmf_traffic::agv::Graph::Waypoint::set_passthrough_point

(C++ function), 37, 55
rmf_traffic::agv::Interpolate (C++ class),

56
rmf_traffic::agv::Interpolate::Options

(C++ class), 57, 58
rmf_traffic::agv::Interpolate::Options::always_stop

(C++ function), 57, 58
rmf_traffic::agv::Interpolate::Options::get_corner_angle_threshold

(C++ function), 57, 58
rmf_traffic::agv::Interpolate::Options::get_rotation_threshold

(C++ function), 57, 58
rmf_traffic::agv::Interpolate::Options::get_translation_threshold

(C++ function), 57, 58
rmf_traffic::agv::Interpolate::Options::Options

(C++ function), 57, 58
rmf_traffic::agv::Interpolate::Options::set_always_stop

(C++ function), 57, 58
rmf_traffic::agv::Interpolate::Options::set_corner_angle_threshold

(C++ function), 57, 58
rmf_traffic::agv::Interpolate::Options::set_rotation_threshold

(C++ function), 57, 58
rmf_traffic::agv::Interpolate::Options::set_translation_threshold

(C++ function), 57, 58
rmf_traffic::agv::Interpolate::positions

(C++ function), 57
rmf_traffic::agv::interpolate_time_along_quadratic_straight_line

(C++ function), 209
rmf_traffic::agv::invalid_traits_error

(C++ class), 59
rmf_traffic::agv::invalid_traits_error::what

(C++ function), 59
rmf_traffic::agv::LaneClosure (C++ class),

59
rmf_traffic::agv::LaneClosure::close

(C++ function), 59
rmf_traffic::agv::LaneClosure::hash

(C++ function), 60
rmf_traffic::agv::LaneClosure::is_closed

(C++ function), 59
rmf_traffic::agv::LaneClosure::is_open

(C++ function), 59
rmf_traffic::agv::LaneClosure::LaneClosure

(C++ function), 59
rmf_traffic::agv::LaneClosure::open

(C++ function), 59
rmf_traffic::agv::LaneClosure::operator==

(C++ function), 60
rmf_traffic::agv::NegotiatingRouteValidator

(C++ class), 60
rmf_traffic::agv::NegotiatingRouteValidator::alternatives

(C++ function), 60
rmf_traffic::agv::NegotiatingRouteValidator::clone

(C++ function), 61
rmf_traffic::agv::NegotiatingRouteValidator::end

(C++ function), 61
rmf_traffic::agv::NegotiatingRouteValidator::find_conflict

(C++ function), 61
rmf_traffic::agv::NegotiatingRouteValidator::Generator

(C++ class), 61, 62
rmf_traffic::agv::NegotiatingRouteValidator::Generator::all

(C++ function), 61, 63
rmf_traffic::agv::NegotiatingRouteValidator::Generator::alternative_count

(C++ function), 62, 63
rmf_traffic::agv::NegotiatingRouteValidator::Generator::alternative_sets

(C++ function), 62, 63
rmf_traffic::agv::NegotiatingRouteValidator::Generator::begin

(C++ function), 61, 63
rmf_traffic::agv::NegotiatingRouteValidator::Generator::Generator

(C++ function), 61, 62
rmf_traffic::agv::NegotiatingRouteValidator::Generator::ignore_bystanders

Index 225

rmf_traffic, Release 1.0.0

(C++ function), 61, 62
rmf_traffic::agv::NegotiatingRouteValidator::Generator::ignore_unresponsive

(C++ function), 61, 62
rmf_traffic::agv::NegotiatingRouteValidator::mask

(C++ function), 60
rmf_traffic::agv::NegotiatingRouteValidator::next

(C++ function), 60
rmf_traffic::agv::NegotiatingRouteValidator::operator

bool (C++ function), 60
rmf_traffic::agv::NegotiatingRouteValidator::remove_mask

(C++ function), 60
rmf_traffic::agv::Plan (C++ class), 63
rmf_traffic::agv::Plan::Checkpoint (C++

struct), 13, 64
rmf_traffic::agv::Plan::Checkpoint::checkpoint_id

(C++ member), 13, 64
rmf_traffic::agv::Plan::Checkpoint::route_id

(C++ member), 13, 64
rmf_traffic::agv::Plan::Checkpoints

(C++ type), 63
rmf_traffic::agv::Plan::Configuration

(C++ type), 63
rmf_traffic::agv::Plan::get_cost (C++

function), 64
rmf_traffic::agv::Plan::get_itinerary

(C++ function), 64
rmf_traffic::agv::Plan::get_start (C++

function), 64
rmf_traffic::agv::Plan::get_waypoints

(C++ function), 64
rmf_traffic::agv::Plan::Goal (C++ type), 63
rmf_traffic::agv::Plan::Options (C++

type), 63
rmf_traffic::agv::Plan::Progress (C++

struct), 13, 64
rmf_traffic::agv::Plan::Progress::checkpoints

(C++ member), 13, 64
rmf_traffic::agv::Plan::Progress::graph_index

(C++ member), 13, 64
rmf_traffic::agv::Plan::Progress::time

(C++ member), 13, 64
rmf_traffic::agv::Plan::Result (C++ type),

63
rmf_traffic::agv::Plan::Start (C++ type),

63
rmf_traffic::agv::Plan::StartSet (C++

type), 63
rmf_traffic::agv::Plan::Waypoint (C++

class), 64, 65
rmf_traffic::agv::Plan::Waypoint::approach_lanes

(C++ function), 65, 66
rmf_traffic::agv::Plan::Waypoint::arrival_checkpoints

(C++ function), 65, 66
rmf_traffic::agv::Plan::Waypoint::dependencies

(C++ function), 65, 66
rmf_traffic::agv::Plan::Waypoint::event

(C++ function), 65, 66
rmf_traffic::agv::Plan::Waypoint::graph_index

(C++ function), 65, 66
rmf_traffic::agv::Plan::Waypoint::itinerary_index

(C++ function), 65, 66
rmf_traffic::agv::Plan::Waypoint::position

(C++ function), 65, 66
rmf_traffic::agv::Plan::Waypoint::progress_checkpoints

(C++ function), 65, 66
rmf_traffic::agv::Plan::Waypoint::time

(C++ function), 65, 66
rmf_traffic::agv::Plan::Waypoint::trajectory_index

(C++ function), 65, 66
rmf_traffic::agv::Planner (C++ class), 67
rmf_traffic::agv::Planner::Configuration

(C++ class), 69, 78
rmf_traffic::agv::Planner::Configuration::Configuration

(C++ function), 69, 78
rmf_traffic::agv::Planner::Configuration::graph

(C++ function), 69, 78
rmf_traffic::agv::Planner::Configuration::interpolation

(C++ function), 69, 78, 79
rmf_traffic::agv::Planner::Configuration::lane_closures

(C++ function), 69, 70, 79
rmf_traffic::agv::Planner::Configuration::traversal_cost_per_meter

(C++ function), 70, 79
rmf_traffic::agv::Planner::Configuration::vehicle_traits

(C++ function), 69, 78
rmf_traffic::agv::Planner::Debug (C++

class), 70, 79
rmf_traffic::agv::Planner::Debug::begin

(C++ function), 70, 80
rmf_traffic::agv::Planner::Debug::ConstNodePtr

(C++ type), 70, 80
rmf_traffic::agv::Planner::Debug::Debug

(C++ function), 70, 80
rmf_traffic::agv::Planner::Debug::expansion_count

(C++ function), 70, 80
rmf_traffic::agv::Planner::Debug::Node

(C++ struct), 14, 70, 80
rmf_traffic::agv::Planner::Debug::Node::Compare

(C++ struct), 14, 15, 71, 81
rmf_traffic::agv::Planner::Debug::Node::Compare::operator()

(C++ function), 14, 15, 71, 81
rmf_traffic::agv::Planner::Debug::Node::current_cost

(C++ member), 14, 71, 80
rmf_traffic::agv::Planner::Debug::Node::event

(C++ member), 14, 71, 80
rmf_traffic::agv::Planner::Debug::Node::id

(C++ member), 14, 71, 81
rmf_traffic::agv::Planner::Debug::Node::orientation

(C++ member), 14, 71, 80

226 Index

rmf_traffic, Release 1.0.0

rmf_traffic::agv::Planner::Debug::Node::parent
(C++ member), 14, 71, 80

rmf_traffic::agv::Planner::Debug::Node::remaining_cost_estimate
(C++ member), 14, 71, 80

rmf_traffic::agv::Planner::Debug::Node::route_from_parent
(C++ member), 14, 71, 80

rmf_traffic::agv::Planner::Debug::Node::SearchQueue
(C++ type), 14, 71, 80

rmf_traffic::agv::Planner::Debug::Node::start_set_index
(C++ member), 14, 71, 80

rmf_traffic::agv::Planner::Debug::Node::Vector
(C++ type), 14, 71, 80

rmf_traffic::agv::Planner::Debug::Node::waypoint
(C++ member), 14, 71, 80

rmf_traffic::agv::Planner::Debug::node_count
(C++ function), 70, 80

rmf_traffic::agv::Planner::Debug::Progress
(C++ class), 71, 81, 82

rmf_traffic::agv::Planner::Debug::Progress::expanded_nodes
(C++ function), 72, 81, 82

rmf_traffic::agv::Planner::Debug::Progress::operator
bool (C++ function), 71, 81, 82

rmf_traffic::agv::Planner::Debug::Progress::queue
(C++ function), 71, 81, 82

rmf_traffic::agv::Planner::Debug::Progress::step
(C++ function), 71, 81, 82

rmf_traffic::agv::Planner::Debug::Progress::terminal_nodes
(C++ function), 72, 81, 82

rmf_traffic::agv::Planner::Debug::queue_size
(C++ function), 70, 80

rmf_traffic::agv::Planner::get_configuration
(C++ function), 67

rmf_traffic::agv::Planner::get_default_options
(C++ function), 67

rmf_traffic::agv::Planner::Goal (C++
class), 72, 82

rmf_traffic::agv::Planner::Goal::any_orientation
(C++ function), 72, 83

rmf_traffic::agv::Planner::Goal::Goal
(C++ function), 72, 82, 83

rmf_traffic::agv::Planner::Goal::minimum_time
(C++ function), 72, 73, 83

rmf_traffic::agv::Planner::Goal::orientation
(C++ function), 72, 83

rmf_traffic::agv::Planner::Goal::waypoint
(C++ function), 72, 83

rmf_traffic::agv::Planner::Options (C++
class), 73, 84

rmf_traffic::agv::Planner::Options::DefaultMinHoldingTime
(C++ member), 75, 86

rmf_traffic::agv::Planner::Options::dependency_resolution
(C++ function), 74, 86

rmf_traffic::agv::Planner::Options::dependency_resoution
(C++ function), 74, 86

rmf_traffic::agv::Planner::Options::dependency_window
(C++ function), 74, 85

rmf_traffic::agv::Planner::Options::interrupt_flag
(C++ function), 74, 85

rmf_traffic::agv::Planner::Options::interrupter
(C++ function), 74, 85

rmf_traffic::agv::Planner::Options::maximum_cost_estimate
(C++ function), 74, 85

rmf_traffic::agv::Planner::Options::minimum_holding_time
(C++ function), 74, 85

rmf_traffic::agv::Planner::Options::Options
(C++ function), 73, 84

rmf_traffic::agv::Planner::Options::saturation_limit
(C++ function), 74, 85

rmf_traffic::agv::Planner::Options::validator
(C++ function), 73, 74, 85

rmf_traffic::agv::Planner::plan (C++
function), 67, 68

rmf_traffic::agv::Planner::Planner (C++
function), 67

rmf_traffic::agv::Planner::Result (C++
class), 75, 86

rmf_traffic::agv::Planner::Result::blockers
(C++ function), 77, 88

rmf_traffic::agv::Planner::Result::cost_estimate
(C++ function), 76, 88

rmf_traffic::agv::Planner::Result::disconnected
(C++ function), 75, 86

rmf_traffic::agv::Planner::Result::get_configuration
(C++ function), 77, 88

rmf_traffic::agv::Planner::Result::get_goal
(C++ function), 76, 88

rmf_traffic::agv::Planner::Result::get_starts
(C++ function), 76, 88

rmf_traffic::agv::Planner::Result::ideal_cost
(C++ function), 76, 88

rmf_traffic::agv::Planner::Result::initial_cost_estimate
(C++ function), 76, 88

rmf_traffic::agv::Planner::Result::interrupted
(C++ function), 77, 88

rmf_traffic::agv::Planner::Result::operator
bool (C++ function), 75, 86

rmf_traffic::agv::Planner::Result::operator*
(C++ function), 75, 86

rmf_traffic::agv::Planner::Result::operator->
(C++ function), 75, 86

rmf_traffic::agv::Planner::Result::options
(C++ function), 76, 88

rmf_traffic::agv::Planner::Result::replan
(C++ function), 75, 86, 87

rmf_traffic::agv::Planner::Result::resume
(C++ function), 76, 87

rmf_traffic::agv::Planner::Result::saturated
(C++ function), 77, 88

Index 227

rmf_traffic, Release 1.0.0

rmf_traffic::agv::Planner::Result::setup
(C++ function), 75, 76, 87

rmf_traffic::agv::Planner::Result::success
(C++ function), 75, 86

rmf_traffic::agv::Planner::set_default_options
(C++ function), 67

rmf_traffic::agv::Planner::setup (C++
function), 68, 69

rmf_traffic::agv::Planner::Start (C++
class), 77, 89

rmf_traffic::agv::Planner::Start::lane
(C++ function), 78, 90

rmf_traffic::agv::Planner::Start::location
(C++ function), 77, 89

rmf_traffic::agv::Planner::Start::orientation
(C++ function), 77, 89

rmf_traffic::agv::Planner::Start::Start
(C++ function), 77, 89

rmf_traffic::agv::Planner::Start::time
(C++ function), 77, 89

rmf_traffic::agv::Planner::Start::waypoint
(C++ function), 77, 89

rmf_traffic::agv::Planner::StartSet
(C++ type), 67

rmf_traffic::agv::Rollout (C++ class), 90
rmf_traffic::agv::Rollout::expand (C++

function), 90, 91
rmf_traffic::agv::Rollout::Rollout (C++

function), 90
rmf_traffic::agv::RouteValidator (C++

class), 91
rmf_traffic::agv::RouteValidator::~RouteValidator

(C++ function), 92
rmf_traffic::agv::RouteValidator::clone

(C++ function), 92
rmf_traffic::agv::RouteValidator::Conflict

(C++ struct), 15, 92
rmf_traffic::agv::RouteValidator::Conflict::dependency

(C++ member), 15, 92
rmf_traffic::agv::RouteValidator::Conflict::route

(C++ member), 15, 92
rmf_traffic::agv::RouteValidator::Conflict::time

(C++ member), 15, 92
rmf_traffic::agv::RouteValidator::find_conflict

(C++ function), 92
rmf_traffic::agv::RouteValidator::ParticipantId

(C++ type), 92
rmf_traffic::agv::RouteValidator::Route

(C++ type), 92
rmf_traffic::agv::ScheduleRouteValidator

(C++ class), 92
rmf_traffic::agv::ScheduleRouteValidator::clone

(C++ function), 94
rmf_traffic::agv::ScheduleRouteValidator::find_conflict

(C++ function), 93
rmf_traffic::agv::ScheduleRouteValidator::make

(C++ function), 94
rmf_traffic::agv::ScheduleRouteValidator::participant

(C++ function), 93
rmf_traffic::agv::ScheduleRouteValidator::schedule_viewer

(C++ function), 93
rmf_traffic::agv::ScheduleRouteValidator::ScheduleRouteValidator

(C++ function), 93
rmf_traffic::agv::SimpleNegotiator (C++

class), 94
rmf_traffic::agv::SimpleNegotiator::Debug

(C++ class), 95, 97
rmf_traffic::agv::SimpleNegotiator::Debug::enable_debug_print

(C++ function), 96, 97
rmf_traffic::agv::SimpleNegotiator::Options

(C++ class), 96, 98
rmf_traffic::agv::SimpleNegotiator::Options::approval_callback

(C++ function), 96, 98
rmf_traffic::agv::SimpleNegotiator::Options::ApprovalCallback

(C++ type), 96, 98
rmf_traffic::agv::SimpleNegotiator::Options::DefaultMaxCostLeeway

(C++ member), 97, 99
rmf_traffic::agv::SimpleNegotiator::Options::DefaultMinCostThreshold

(C++ member), 97, 99
rmf_traffic::agv::SimpleNegotiator::Options::interrupt_flag

(C++ function), 96, 98
rmf_traffic::agv::SimpleNegotiator::Options::maximum_alternatives

(C++ function), 97, 99
rmf_traffic::agv::SimpleNegotiator::Options::maximum_cost_leeway

(C++ function), 96, 98
rmf_traffic::agv::SimpleNegotiator::Options::maximum_cost_threshold

(C++ function), 96, 98, 99
rmf_traffic::agv::SimpleNegotiator::Options::minimum_cost_threshold

(C++ function), 96, 98
rmf_traffic::agv::SimpleNegotiator::Options::minimum_holding_time

(C++ function), 97, 99
rmf_traffic::agv::SimpleNegotiator::Options::Options

(C++ function), 96, 98
rmf_traffic::agv::SimpleNegotiator::respond

(C++ function), 95
rmf_traffic::agv::SimpleNegotiator::SimpleNegotiator

(C++ function), 94, 95
rmf_traffic::agv::TimeVelocity (C++

struct), 16
rmf_traffic::agv::TimeVelocity::time

(C++ member), 16
rmf_traffic::agv::TimeVelocity::velocity

(C++ member), 16
rmf_traffic::agv::VehicleTraits (C++

class), 99
rmf_traffic::agv::VehicleTraits::Differential

(C++ class), 100, 101
rmf_traffic::agv::VehicleTraits::Differential::Differential

228 Index

rmf_traffic, Release 1.0.0

(C++ function), 100, 101
rmf_traffic::agv::VehicleTraits::Differential::get_forward

(C++ function), 100, 101
rmf_traffic::agv::VehicleTraits::Differential::is_reversible

(C++ function), 100, 101
rmf_traffic::agv::VehicleTraits::Differential::set_forward

(C++ function), 100, 101
rmf_traffic::agv::VehicleTraits::Differential::set_reversible

(C++ function), 100, 101
rmf_traffic::agv::VehicleTraits::Differential::valid

(C++ function), 100, 101
rmf_traffic::agv::VehicleTraits::get_differential

(C++ function), 100
rmf_traffic::agv::VehicleTraits::get_holonomic

(C++ function), 100
rmf_traffic::agv::VehicleTraits::get_steering

(C++ function), 100
rmf_traffic::agv::VehicleTraits::Holonomic

(C++ class), 100, 102
rmf_traffic::agv::VehicleTraits::Holonomic::Holonomic

(C++ function), 101, 102
rmf_traffic::agv::VehicleTraits::Limits

(C++ class), 101, 102
rmf_traffic::agv::VehicleTraits::Limits::get_nominal_acceleration

(C++ function), 101, 102
rmf_traffic::agv::VehicleTraits::Limits::get_nominal_velocity

(C++ function), 101, 102
rmf_traffic::agv::VehicleTraits::Limits::Limits

(C++ function), 101, 102
rmf_traffic::agv::VehicleTraits::Limits::set_nominal_acceleration

(C++ function), 101, 102
rmf_traffic::agv::VehicleTraits::Limits::set_nominal_velocity

(C++ function), 101, 102
rmf_traffic::agv::VehicleTraits::Limits::valid

(C++ function), 101, 102
rmf_traffic::agv::VehicleTraits::linear

(C++ function), 100
rmf_traffic::agv::VehicleTraits::profile

(C++ function), 100
rmf_traffic::agv::VehicleTraits::rotational

(C++ function), 100
rmf_traffic::agv::VehicleTraits::set_differential

(C++ function), 100
rmf_traffic::agv::VehicleTraits::set_holonomic

(C++ function), 100
rmf_traffic::agv::VehicleTraits::Steering

(C++ enum), 99
rmf_traffic::agv::VehicleTraits::Steering::Differential

(C++ enumerator), 99
rmf_traffic::agv::VehicleTraits::Steering::Holonomic

(C++ enumerator), 99
rmf_traffic::agv::VehicleTraits::valid

(C++ function), 100
rmf_traffic::agv::VehicleTraits::VehicleTraits

(C++ function), 100
rmf_traffic::blockade::CheckpointId

(C++ type), 216
rmf_traffic::blockade::make_participant

(C++ function), 209
rmf_traffic::blockade::Moderator (C++

class), 103
rmf_traffic::blockade::Moderator::Assignments

(C++ class), 104, 105
rmf_traffic::blockade::Moderator::assignments

(C++ function), 104
rmf_traffic::blockade::Moderator::Assignments::ranges

(C++ function), 104, 105
rmf_traffic::blockade::Moderator::Assignments::version

(C++ function), 104, 105
rmf_traffic::blockade::Moderator::cancel

(C++ function), 103
rmf_traffic::blockade::Moderator::debug_logger

(C++ function), 104
rmf_traffic::blockade::Moderator::has_gridlock

(C++ function), 104
rmf_traffic::blockade::Moderator::info_logger

(C++ function), 104
rmf_traffic::blockade::Moderator::minimum_conflict_angle

(C++ function), 104
rmf_traffic::blockade::Moderator::Moderator

(C++ function), 104
rmf_traffic::blockade::Moderator::reached

(C++ function), 103
rmf_traffic::blockade::Moderator::ready

(C++ function), 103
rmf_traffic::blockade::Moderator::release

(C++ function), 103
rmf_traffic::blockade::Moderator::set

(C++ function), 103
rmf_traffic::blockade::Moderator::statuses

(C++ function), 104
rmf_traffic::blockade::ModeratorRectificationRequesterFactory

(C++ class), 105
rmf_traffic::blockade::ModeratorRectificationRequesterFactory::make

(C++ function), 106
rmf_traffic::blockade::ModeratorRectificationRequesterFactory::ModeratorRectificationRequesterFactory

(C++ function), 106
rmf_traffic::blockade::ModeratorRectificationRequesterFactory::rectify

(C++ function), 106
rmf_traffic::blockade::Participant (C++

class), 106
rmf_traffic::blockade::Participant::cancel

(C++ function), 107
rmf_traffic::blockade::Participant::id

(C++ function), 107
rmf_traffic::blockade::Participant::last_reached

(C++ function), 107
rmf_traffic::blockade::Participant::last_ready

Index 229

rmf_traffic, Release 1.0.0

(C++ function), 107
rmf_traffic::blockade::Participant::path

(C++ function), 106
rmf_traffic::blockade::Participant::radius

(C++ function), 106
rmf_traffic::blockade::Participant::reached

(C++ function), 107
rmf_traffic::blockade::Participant::ready

(C++ function), 106
rmf_traffic::blockade::Participant::release

(C++ function), 106
rmf_traffic::blockade::Participant::reservation_id

(C++ function), 107
rmf_traffic::blockade::Participant::set

(C++ function), 106
rmf_traffic::blockade::ParticipantId

(C++ type), 216
rmf_traffic::blockade::RectificationRequester

(C++ class), 107
rmf_traffic::blockade::RectificationRequester::~RectificationRequester

(C++ function), 107
rmf_traffic::blockade::RectificationRequesterFactory

(C++ class), 108
rmf_traffic::blockade::RectificationRequesterFactory::~RectificationRequesterFactory

(C++ function), 108
rmf_traffic::blockade::RectificationRequesterFactory::make

(C++ function), 108
rmf_traffic::blockade::Rectifier (C++

class), 108
rmf_traffic::blockade::Rectifier::check

(C++ function), 109
rmf_traffic::blockade::ReservationId

(C++ type), 216
rmf_traffic::blockade::ReservedRange

(C++ struct), 16
rmf_traffic::blockade::ReservedRange::begin

(C++ member), 16
rmf_traffic::blockade::ReservedRange::end

(C++ member), 16
rmf_traffic::blockade::ReservedRange::operator==

(C++ function), 16
rmf_traffic::blockade::Status (C++

struct), 16
rmf_traffic::blockade::Status::critical_error

(C++ member), 16
rmf_traffic::blockade::Status::last_reached

(C++ member), 16
rmf_traffic::blockade::Status::last_ready

(C++ member), 16
rmf_traffic::blockade::Status::reservation

(C++ member), 16
rmf_traffic::blockade::Version (C++ type),

216
rmf_traffic::blockade::Writer (C++ class),

109
rmf_traffic::blockade::Writer::~Writer

(C++ function), 110
rmf_traffic::blockade::Writer::cancel

(C++ function), 110
rmf_traffic::blockade::Writer::Checkpoint

(C++ struct), 17, 110
rmf_traffic::blockade::Writer::Checkpoint::can_hold

(C++ member), 17, 110
rmf_traffic::blockade::Writer::Checkpoint::map_name

(C++ member), 17, 110
rmf_traffic::blockade::Writer::Checkpoint::position

(C++ member), 17, 110
rmf_traffic::blockade::Writer::reached

(C++ function), 110
rmf_traffic::blockade::Writer::ready

(C++ function), 109
rmf_traffic::blockade::Writer::release

(C++ function), 109
rmf_traffic::blockade::Writer::Reservation

(C++ struct), 17, 110
rmf_traffic::blockade::Writer::Reservation::path

(C++ member), 17, 110
rmf_traffic::blockade::Writer::Reservation::radius

(C++ member), 17, 110
rmf_traffic::blockade::Writer::set (C++

function), 109
rmf_traffic::CheckpointId (C++ type), 217
rmf_traffic::ConstRoutePtr (C++ type), 217
rmf_traffic::debug::Plumber (C++ class),

110
rmf_traffic::debug::Plumber::~Plumber

(C++ function), 111
rmf_traffic::debug::Plumber::Plumber

(C++ function), 111
rmf_traffic::Dependencies (C++ type), 217
rmf_traffic::Dependency (C++ struct), 18
rmf_traffic::Dependency::on_checkpoint

(C++ member), 18
rmf_traffic::Dependency::on_participant

(C++ member), 18
rmf_traffic::Dependency::on_plan (C++

member), 18
rmf_traffic::Dependency::on_route (C++

member), 18
rmf_traffic::Dependency::operator==

(C++ function), 18
rmf_traffic::DependsOnCheckpoint (C++

type), 217
rmf_traffic::DependsOnParticipant (C++

type), 217
rmf_traffic::DependsOnPlan (C++ class), 111
rmf_traffic::DependsOnPlan::add_dependency

(C++ function), 111

230 Index

rmf_traffic, Release 1.0.0

rmf_traffic::DependsOnPlan::Dependency
(C++ struct), 18, 111

rmf_traffic::DependsOnPlan::Dependency::on_checkpoint
(C++ member), 18, 112

rmf_traffic::DependsOnPlan::Dependency::on_route
(C++ member), 18, 112

rmf_traffic::DependsOnPlan::DependsOnPlan
(C++ function), 111

rmf_traffic::DependsOnPlan::plan (C++
function), 111

rmf_traffic::DependsOnPlan::routes (C++
function), 111

rmf_traffic::DependsOnRoute (C++ type), 218
rmf_traffic::detail::bidirectional_iterator

(C++ class), 112
rmf_traffic::detail::bidirectional_iterator::bidirectional_iterator

(C++ function), 113
rmf_traffic::detail::bidirectional_iterator::Element

(C++ type), 112
rmf_traffic::detail::bidirectional_iterator::Implementation

(C++ type), 112
rmf_traffic::detail::bidirectional_iterator::operator

bidirectional_iterator<const
Element, Implementation,
Friend> (C++ function), 113

rmf_traffic::detail::bidirectional_iterator::operator!=
(C++ function), 113

rmf_traffic::detail::bidirectional_iterator::operator*
(C++ function), 112

rmf_traffic::detail::bidirectional_iterator::operator++
(C++ function), 112

rmf_traffic::detail::bidirectional_iterator::operator=
(C++ function), 113

rmf_traffic::detail::bidirectional_iterator::operator==
(C++ function), 113

rmf_traffic::detail::bidirectional_iterator::operator--
(C++ function), 112

rmf_traffic::detail::bidirectional_iterator::operator->
(C++ function), 112

rmf_traffic::detail::forward_iterator
(C++ class), 113

rmf_traffic::detail::forward_iterator::Element
(C++ type), 113

rmf_traffic::detail::forward_iterator::forward_iterator
(C++ function), 114

rmf_traffic::detail::forward_iterator::Implementation
(C++ type), 113

rmf_traffic::detail::forward_iterator::operator
forward_iterator<const Element,
Implementation, Friend> (C++
function), 114

rmf_traffic::detail::forward_iterator::operator!=
(C++ function), 114

rmf_traffic::detail::forward_iterator::operator*

(C++ function), 113
rmf_traffic::detail::forward_iterator::operator++

(C++ function), 113, 114
rmf_traffic::detail::forward_iterator::operator=

(C++ function), 114
rmf_traffic::detail::forward_iterator::operator==

(C++ function), 114
rmf_traffic::detail::forward_iterator::operator->

(C++ function), 113
rmf_traffic::DetectConflict (C++ class),

114
rmf_traffic::DetectConflict::between

(C++ function), 115
rmf_traffic::DetectConflict::Conflict

(C++ struct), 19, 115
rmf_traffic::DetectConflict::Conflict::a_it

(C++ member), 19, 115
rmf_traffic::DetectConflict::Conflict::b_it

(C++ member), 19, 115
rmf_traffic::DetectConflict::Conflict::time

(C++ member), 19, 115
rmf_traffic::DetectConflict::Interpolate

(C++ enum), 114
rmf_traffic::DetectConflict::Interpolate::CubicSpline

(C++ enumerator), 114
rmf_traffic::Duration (C++ type), 218
rmf_traffic::geometry::Circle (C++ class),

116
rmf_traffic::geometry::Circle::Circle

(C++ function), 116
rmf_traffic::geometry::Circle::finalize

(C++ function), 116
rmf_traffic::geometry::Circle::finalize_convex

(C++ function), 116
rmf_traffic::geometry::Circle::get_radius

(C++ function), 116
rmf_traffic::geometry::Circle::operator=

(C++ function), 116
rmf_traffic::geometry::Circle::set_radius

(C++ function), 116
rmf_traffic::geometry::ConstConvexShapePtr

(C++ type), 218
rmf_traffic::geometry::ConstFinalConvexShapePtr

(C++ type), 218
rmf_traffic::geometry::ConstFinalShapePtr

(C++ type), 219
rmf_traffic::geometry::ConstShapePtr

(C++ type), 219
rmf_traffic::geometry::ConvexShape (C++

class), 116
rmf_traffic::geometry::ConvexShape::ConvexShape

(C++ function), 117
rmf_traffic::geometry::ConvexShape::finalize_convex

(C++ function), 117

Index 231

rmf_traffic, Release 1.0.0

rmf_traffic::geometry::ConvexShapePtr
(C++ type), 219

rmf_traffic::geometry::FinalConvexShape
(C++ class), 117

rmf_traffic::geometry::FinalConvexShape::FinalConvexShape
(C++ function), 117

rmf_traffic::geometry::FinalConvexShapePtr
(C++ type), 219

rmf_traffic::geometry::FinalShape (C++
class), 118

rmf_traffic::geometry::FinalShape::_pimpl
(C++ member), 118

rmf_traffic::geometry::FinalShape::~FinalShape
(C++ function), 118

rmf_traffic::geometry::FinalShape::FinalShape
(C++ function), 118

rmf_traffic::geometry::FinalShape::get_characteristic_length
(C++ function), 118

rmf_traffic::geometry::FinalShape::operator!=
(C++ function), 118

rmf_traffic::geometry::FinalShape::operator==
(C++ function), 118

rmf_traffic::geometry::FinalShape::source
(C++ function), 118

rmf_traffic::geometry::FinalShapePtr
(C++ type), 219

rmf_traffic::geometry::make_final (C++
function), 210

rmf_traffic::geometry::make_final_convex
(C++ function), 210

rmf_traffic::geometry::operator!= (C++
function), 211

rmf_traffic::geometry::operator== (C++
function), 211, 212

rmf_traffic::geometry::Shape (C++ class),
118

rmf_traffic::geometry::Shape::_get_internal
(C++ function), 119

rmf_traffic::geometry::Shape::~Shape
(C++ function), 119

rmf_traffic::geometry::Shape::finalize
(C++ function), 119

rmf_traffic::geometry::Shape::operator=
(C++ function), 119

rmf_traffic::geometry::Shape::Shape
(C++ function), 119

rmf_traffic::geometry::ShapePtr (C++
type), 220

rmf_traffic::geometry::Space (C++ class),
119

rmf_traffic::geometry::Space::get_pose
(C++ function), 119

rmf_traffic::geometry::Space::get_shape
(C++ function), 119

rmf_traffic::geometry::Space::set_pose
(C++ function), 119

rmf_traffic::geometry::Space::set_shape
(C++ function), 119

rmf_traffic::geometry::Space::Space
(C++ function), 119

rmf_traffic::invalid_trajectory_error
(C++ class), 120

rmf_traffic::invalid_trajectory_error::what
(C++ function), 120

rmf_traffic::Motion (C++ class), 120
rmf_traffic::Motion::~Motion (C++ func-

tion), 120
rmf_traffic::Motion::compute_acceleration

(C++ function), 120
rmf_traffic::Motion::compute_cubic_splines

(C++ function), 121
rmf_traffic::Motion::compute_position

(C++ function), 120
rmf_traffic::Motion::compute_velocity

(C++ function), 120
rmf_traffic::Motion::finish_time (C++

function), 120
rmf_traffic::Motion::start_time (C++

function), 120
rmf_traffic::operator!= (C++ function), 212
rmf_traffic::operator== (C++ function), 212
rmf_traffic::ParticipantId (C++ type), 220
rmf_traffic::PlanId (C++ type), 220
rmf_traffic::Profile (C++ class), 121
rmf_traffic::Profile::footprint (C++

function), 121
rmf_traffic::Profile::operator== (C++

function), 121
rmf_traffic::Profile::Profile (C++ func-

tion), 121
rmf_traffic::Profile::vicinity (C++ func-

tion), 121
rmf_traffic::Region (C++ class), 122
rmf_traffic::Region::base_iterator (C++

type), 122
rmf_traffic::Region::begin (C++ function),

123
rmf_traffic::Region::cbegin (C++ function),

123
rmf_traffic::Region::cend (C++ function),

123
rmf_traffic::Region::const_iterator

(C++ type), 122
rmf_traffic::Region::end (C++ function), 123
rmf_traffic::Region::erase (C++ function),

123
rmf_traffic::Region::get_lower_time_bound

(C++ function), 123

232 Index

rmf_traffic, Release 1.0.0

rmf_traffic::Region::get_map (C++ func-
tion), 122

rmf_traffic::Region::get_upper_time_bound
(C++ function), 123

rmf_traffic::Region::iterator (C++ type),
122

rmf_traffic::Region::num_spaces (C++
function), 123

rmf_traffic::Region::pop_back (C++ func-
tion), 123

rmf_traffic::Region::push_back (C++ func-
tion), 123

rmf_traffic::Region::Region (C++ function),
122

rmf_traffic::Region::remove_lower_time_bound
(C++ function), 123

rmf_traffic::Region::remove_upper_time_bound
(C++ function), 123

rmf_traffic::Region::set_lower_time_bound
(C++ function), 123

rmf_traffic::Region::set_map (C++ func-
tion), 122

rmf_traffic::Region::set_upper_time_bound
(C++ function), 123

rmf_traffic::Region::Space (C++ type), 122
rmf_traffic::Route (C++ class), 124
rmf_traffic::Route::add_dependency (C++

function), 124
rmf_traffic::Route::check_dependencies

(C++ function), 125
rmf_traffic::Route::checkpoints (C++

function), 124
rmf_traffic::Route::dependencies (C++

function), 124
rmf_traffic::Route::map (C++ function), 124
rmf_traffic::Route::Route (C++ function),

124
rmf_traffic::Route::should_ignore (C++

function), 125
rmf_traffic::Route::trajectory (C++ func-

tion), 124
rmf_traffic::RouteId (C++ type), 220
rmf_traffic::RoutePtr (C++ type), 220
rmf_traffic::schedule::Change (C++ class),

126
rmf_traffic::schedule::Change::Add (C++

class), 126, 129
rmf_traffic::schedule::Change::Add::Add

(C++ function), 126, 129
rmf_traffic::schedule::Change::Add::Item

(C++ struct), 19, 126, 129
rmf_traffic::schedule::Change::Add::Item::route

(C++ member), 19, 126, 129
rmf_traffic::schedule::Change::Add::Item::route_id

(C++ member), 19, 126, 129
rmf_traffic::schedule::Change::Add::Item::storage_id

(C++ member), 19, 126, 129
rmf_traffic::schedule::Change::Add::items

(C++ function), 126, 129
rmf_traffic::schedule::Change::Add::plan_id

(C++ function), 126, 129
rmf_traffic::schedule::Change::Cull

(C++ class), 126, 129
rmf_traffic::schedule::Change::Cull::Cull

(C++ function), 126, 130
rmf_traffic::schedule::Change::Cull::time

(C++ function), 126, 130
rmf_traffic::schedule::Change::Delay

(C++ class), 126, 130
rmf_traffic::schedule::Change::Delay::Delay

(C++ function), 127, 130
rmf_traffic::schedule::Change::Delay::duration

(C++ function), 127, 130
rmf_traffic::schedule::Change::Erase

(C++ class), 127, 131
rmf_traffic::schedule::Change::Erase::Erase

(C++ function), 127, 131
rmf_traffic::schedule::Change::Erase::ids

(C++ function), 127, 131
rmf_traffic::schedule::Change::Progress

(C++ class), 127, 131
rmf_traffic::schedule::Change::Progress::checkpoints

(C++ function), 127, 131
rmf_traffic::schedule::Change::Progress::Progress

(C++ function), 127, 131
rmf_traffic::schedule::Change::Progress::version

(C++ function), 127, 131
rmf_traffic::schedule::Change::RegisterParticipant

(C++ class), 127, 132
rmf_traffic::schedule::Change::RegisterParticipant::description

(C++ function), 127, 132
rmf_traffic::schedule::Change::RegisterParticipant::id

(C++ function), 127, 132
rmf_traffic::schedule::Change::RegisterParticipant::RegisterParticipant

(C++ function), 127, 132
rmf_traffic::schedule::Change::UnregisterParticipant

(C++ class), 128, 132
rmf_traffic::schedule::Change::UnregisterParticipant::id

(C++ function), 128, 133
rmf_traffic::schedule::Change::UnregisterParticipant::UnregisterParticipant

(C++ function), 128, 133
rmf_traffic::schedule::Change::UpdateParticipantInfo

(C++ class), 128, 133
rmf_traffic::schedule::Change::UpdateParticipantInfo::description

(C++ function), 128, 133
rmf_traffic::schedule::Change::UpdateParticipantInfo::id

(C++ function), 128, 133
rmf_traffic::schedule::Change::UpdateParticipantInfo::UpdateParticipantInfo

Index 233

rmf_traffic, Release 1.0.0

(C++ function), 128, 133
rmf_traffic::schedule::Database (C++

class), 134
rmf_traffic::schedule::Database::changes

(C++ function), 137
rmf_traffic::schedule::Database::clear

(C++ function), 135
rmf_traffic::schedule::Database::cull

(C++ function), 137
rmf_traffic::schedule::Database::Database

(C++ function), 136
rmf_traffic::schedule::Database::delay

(C++ function), 135
rmf_traffic::schedule::Database::extend

(C++ function), 134
rmf_traffic::schedule::Database::get_current_plan_id

(C++ function), 136
rmf_traffic::schedule::Database::get_current_progress

(C++ function), 136
rmf_traffic::schedule::Database::get_current_progress_version

(C++ function), 136
rmf_traffic::schedule::Database::get_itinerary

(C++ function), 136
rmf_traffic::schedule::Database::get_participant

(C++ function), 136
rmf_traffic::schedule::Database::inconsistencies

(C++ function), 136
rmf_traffic::schedule::Database::itinerary_version

(C++ function), 137
rmf_traffic::schedule::Database::latest_plan_id

(C++ function), 137
rmf_traffic::schedule::Database::latest_version

(C++ function), 136
rmf_traffic::schedule::Database::next_storage_base

(C++ function), 138
rmf_traffic::schedule::Database::participant_ids

(C++ function), 136
rmf_traffic::schedule::Database::query

(C++ function), 136, 137
rmf_traffic::schedule::Database::reached

(C++ function), 135
rmf_traffic::schedule::Database::register_participant

(C++ function), 135
rmf_traffic::schedule::Database::set

(C++ function), 134
rmf_traffic::schedule::Database::set_current_time

(C++ function), 137
rmf_traffic::schedule::Database::snapshot

(C++ function), 136
rmf_traffic::schedule::Database::unregister_participant

(C++ function), 136
rmf_traffic::schedule::Database::update_description

(C++ function), 135
rmf_traffic::schedule::Database::watch_dependency

(C++ function), 136
rmf_traffic::schedule::DatabaseRectificationRequesterFactory

(C++ class), 138
rmf_traffic::schedule::DatabaseRectificationRequesterFactory::change_database

(C++ function), 138
rmf_traffic::schedule::DatabaseRectificationRequesterFactory::DatabaseRectificationRequesterFactory

(C++ function), 138
rmf_traffic::schedule::DatabaseRectificationRequesterFactory::make

(C++ function), 138
rmf_traffic::schedule::DatabaseRectificationRequesterFactory::rectify

(C++ function), 138
rmf_traffic::schedule::Inconsistencies

(C++ class), 139
rmf_traffic::schedule::Inconsistencies::base_iter

(C++ type), 139
rmf_traffic::schedule::Inconsistencies::begin

(C++ function), 139
rmf_traffic::schedule::Inconsistencies::cbegin

(C++ function), 139
rmf_traffic::schedule::Inconsistencies::cend

(C++ function), 139
rmf_traffic::schedule::Inconsistencies::const_iterator

(C++ type), 139
rmf_traffic::schedule::Inconsistencies::Element

(C++ struct), 20, 139
rmf_traffic::schedule::Inconsistencies::Element::participant

(C++ member), 20, 140
rmf_traffic::schedule::Inconsistencies::Element::ranges

(C++ member), 20, 140
rmf_traffic::schedule::Inconsistencies::end

(C++ function), 139
rmf_traffic::schedule::Inconsistencies::find

(C++ function), 139
rmf_traffic::schedule::Inconsistencies::Ranges

(C++ class), 140, 141
rmf_traffic::schedule::Inconsistencies::Ranges::begin

(C++ function), 140, 141
rmf_traffic::schedule::Inconsistencies::Ranges::cbegin

(C++ function), 140, 141
rmf_traffic::schedule::Inconsistencies::Ranges::cend

(C++ function), 140, 141
rmf_traffic::schedule::Inconsistencies::Ranges::const_iterator

(C++ type), 140, 141
rmf_traffic::schedule::Inconsistencies::Ranges::end

(C++ function), 140, 141
rmf_traffic::schedule::Inconsistencies::Ranges::last_known_version

(C++ function), 140, 141
rmf_traffic::schedule::Inconsistencies::Ranges::Range

(C++ struct), 20, 140, 141
rmf_traffic::schedule::Inconsistencies::Ranges::Range::lower

(C++ member), 20, 140, 141
rmf_traffic::schedule::Inconsistencies::Ranges::Range::upper

(C++ member), 20, 140, 141
rmf_traffic::schedule::Inconsistencies::Ranges::size

234 Index

rmf_traffic, Release 1.0.0

(C++ function), 140, 141
rmf_traffic::schedule::Inconsistencies::size

(C++ function), 139
rmf_traffic::schedule::Itinerary (C++

type), 221
rmf_traffic::schedule::ItineraryVersion

(C++ type), 221
rmf_traffic::schedule::ItineraryView

(C++ type), 221
rmf_traffic::schedule::ItineraryViewer

(C++ class), 142
rmf_traffic::schedule::ItineraryViewer::~ItineraryViewer

(C++ function), 143
rmf_traffic::schedule::ItineraryViewer::DependencySubscription

(C++ class), 143, 144
rmf_traffic::schedule::ItineraryViewer::DependencySubscription::dependency

(C++ function), 143, 144
rmf_traffic::schedule::ItineraryViewer::DependencySubscription::deprecated

(C++ function), 143, 144
rmf_traffic::schedule::ItineraryViewer::DependencySubscription::finished

(C++ function), 143, 144
rmf_traffic::schedule::ItineraryViewer::DependencySubscription::reached

(C++ function), 143, 144
rmf_traffic::schedule::ItineraryViewer::get_current_plan_id

(C++ function), 142
rmf_traffic::schedule::ItineraryViewer::get_current_progress

(C++ function), 142
rmf_traffic::schedule::ItineraryViewer::get_current_progress_version

(C++ function), 142
rmf_traffic::schedule::ItineraryViewer::get_itinerary

(C++ function), 142
rmf_traffic::schedule::ItineraryViewer::watch_dependency

(C++ function), 143
rmf_traffic::schedule::make_query (C++

function), 213
rmf_traffic::schedule::Mirror (C++ class),

144
rmf_traffic::schedule::Mirror::fork

(C++ function), 146
rmf_traffic::schedule::Mirror::get_current_plan_id

(C++ function), 145
rmf_traffic::schedule::Mirror::get_current_progress

(C++ function), 145
rmf_traffic::schedule::Mirror::get_current_progress_version

(C++ function), 145
rmf_traffic::schedule::Mirror::get_itinerary

(C++ function), 145
rmf_traffic::schedule::Mirror::get_participant

(C++ function), 145
rmf_traffic::schedule::Mirror::latest_version

(C++ function), 145
rmf_traffic::schedule::Mirror::Mirror

(C++ function), 145
rmf_traffic::schedule::Mirror::participant_ids

(C++ function), 145
rmf_traffic::schedule::Mirror::query

(C++ function), 145
rmf_traffic::schedule::Mirror::snapshot

(C++ function), 145
rmf_traffic::schedule::Mirror::update

(C++ function), 146
rmf_traffic::schedule::Mirror::update_participants_info

(C++ function), 145
rmf_traffic::schedule::Mirror::watch_dependency

(C++ function), 145
rmf_traffic::schedule::Negotiation (C++

class), 146
rmf_traffic::schedule::Negotiation::add_participant

(C++ function), 147
rmf_traffic::schedule::Negotiation::Alternatives

(C++ type), 147
rmf_traffic::schedule::Negotiation::complete

(C++ function), 147
rmf_traffic::schedule::Negotiation::ConstTablePtr

(C++ type), 147
rmf_traffic::schedule::Negotiation::evaluate

(C++ function), 148
rmf_traffic::schedule::Negotiation::Evaluator

(C++ class), 149, 154
rmf_traffic::schedule::Negotiation::Evaluator::~Evaluator

(C++ function), 149, 154
rmf_traffic::schedule::Negotiation::Evaluator::choose

(C++ function), 149, 154
rmf_traffic::schedule::Negotiation::find

(C++ function), 147, 148
rmf_traffic::schedule::Negotiation::make

(C++ function), 148
rmf_traffic::schedule::Negotiation::make_shared

(C++ function), 148
rmf_traffic::schedule::Negotiation::participants

(C++ function), 147
rmf_traffic::schedule::Negotiation::Proposal

(C++ type), 146
rmf_traffic::schedule::Negotiation::ready

(C++ function), 147
rmf_traffic::schedule::Negotiation::SearchResult

(C++ struct), 21, 149
rmf_traffic::schedule::Negotiation::SearchResult::absent

(C++ function), 21, 149
rmf_traffic::schedule::Negotiation::SearchResult::deprecated

(C++ function), 21, 149
rmf_traffic::schedule::Negotiation::SearchResult::found

(C++ function), 21, 149
rmf_traffic::schedule::Negotiation::SearchResult::operator

bool (C++ function), 21, 149
rmf_traffic::schedule::Negotiation::SearchResult::status

(C++ member), 21, 149
rmf_traffic::schedule::Negotiation::SearchResult::table

Index 235

rmf_traffic, Release 1.0.0

(C++ member), 21, 149
rmf_traffic::schedule::Negotiation::SearchStatus

(C++ enum), 146
rmf_traffic::schedule::Negotiation::SearchStatus::Absent

(C++ enumerator), 146
rmf_traffic::schedule::Negotiation::SearchStatus::Deprecated

(C++ enumerator), 146
rmf_traffic::schedule::Negotiation::SearchStatus::Found

(C++ enumerator), 146
rmf_traffic::schedule::Negotiation::Submission

(C++ struct), 21, 149
rmf_traffic::schedule::Negotiation::Submission::itinerary

(C++ member), 21, 149
rmf_traffic::schedule::Negotiation::Submission::participant

(C++ member), 21, 149
rmf_traffic::schedule::Negotiation::Submission::plan

(C++ member), 21, 149
rmf_traffic::schedule::Negotiation::Table

(C++ class), 149, 155
rmf_traffic::schedule::Negotiation::table

(C++ function), 147
rmf_traffic::schedule::Negotiation::Table::children

(C++ function), 151, 156
rmf_traffic::schedule::Negotiation::Table::defunct

(C++ function), 151, 156
rmf_traffic::schedule::Negotiation::Table::forfeit

(C++ function), 151, 156
rmf_traffic::schedule::Negotiation::Table::forfeited

(C++ function), 151, 156
rmf_traffic::schedule::Negotiation::Table::ongoing

(C++ function), 151, 156
rmf_traffic::schedule::Negotiation::Table::parent

(C++ function), 151, 156
rmf_traffic::schedule::Negotiation::Table::participant

(C++ function), 150, 155
rmf_traffic::schedule::Negotiation::Table::proposal

(C++ function), 150, 155
rmf_traffic::schedule::Negotiation::Table::reject

(C++ function), 150, 156
rmf_traffic::schedule::Negotiation::Table::rejected

(C++ function), 151, 156
rmf_traffic::schedule::Negotiation::Table::respond

(C++ function), 151, 156
rmf_traffic::schedule::Negotiation::Table::sequence

(C++ function), 150, 155
rmf_traffic::schedule::Negotiation::Table::submission

(C++ function), 150, 155
rmf_traffic::schedule::Negotiation::Table::submit

(C++ function), 150, 155
rmf_traffic::schedule::Negotiation::Table::unversioned_sequence

(C++ function), 150, 155
rmf_traffic::schedule::Negotiation::Table::version

(C++ function), 150, 155
rmf_traffic::schedule::Negotiation::Table::Viewer

(C++ class), 151, 157, 159
rmf_traffic::schedule::Negotiation::Table::viewer

(C++ function), 150, 155
rmf_traffic::schedule::Negotiation::Table::Viewer::AlternativeMap

(C++ type), 151, 157, 159
rmf_traffic::schedule::Negotiation::Table::Viewer::alternatives

(C++ function), 152, 157, 159
rmf_traffic::schedule::Negotiation::Table::Viewer::base_proposals

(C++ function), 152, 157, 159
rmf_traffic::schedule::Negotiation::Table::Viewer::defunct

(C++ function), 152, 157, 159
rmf_traffic::schedule::Negotiation::Table::Viewer::earliest_base_proposal_time

(C++ function), 152, 158, 160
rmf_traffic::schedule::Negotiation::Table::Viewer::Endpoint

(C++ class), 153, 158, 160, 161
rmf_traffic::schedule::Negotiation::Table::Viewer::Endpoint::description

(C++ function), 153, 158, 160, 161
rmf_traffic::schedule::Negotiation::Table::Viewer::Endpoint::map

(C++ function), 153, 158, 160, 161
rmf_traffic::schedule::Negotiation::Table::Viewer::Endpoint::participant

(C++ function), 153, 158, 160, 161
rmf_traffic::schedule::Negotiation::Table::Viewer::Endpoint::plan_id

(C++ function), 153, 158, 160, 161
rmf_traffic::schedule::Negotiation::Table::Viewer::Endpoint::route_id

(C++ function), 153, 158, 160, 161
rmf_traffic::schedule::Negotiation::Table::Viewer::Endpoint::waypoint

(C++ function), 153, 158, 160, 161
rmf_traffic::schedule::Negotiation::Table::Viewer::final_endpoints

(C++ function), 152, 157, 159
rmf_traffic::schedule::Negotiation::Table::Viewer::forfeited

(C++ function), 152, 158, 160
rmf_traffic::schedule::Negotiation::Table::Viewer::get_description

(C++ function), 152, 157, 159
rmf_traffic::schedule::Negotiation::Table::Viewer::initial_endpoints

(C++ function), 152, 157, 159
rmf_traffic::schedule::Negotiation::Table::Viewer::latest_base_proposal_time

(C++ function), 152, 158, 160
rmf_traffic::schedule::Negotiation::Table::Viewer::parent_id

(C++ function), 152, 157, 159
rmf_traffic::schedule::Negotiation::Table::Viewer::participant_id

(C++ function), 152, 157, 159
rmf_traffic::schedule::Negotiation::Table::Viewer::query

(C++ function), 152, 157, 159
rmf_traffic::schedule::Negotiation::Table::Viewer::rejected

(C++ function), 152, 157, 160
rmf_traffic::schedule::Negotiation::Table::Viewer::sequence

(C++ function), 152, 157, 159
rmf_traffic::schedule::Negotiation::Table::Viewer::submission

(C++ function), 152, 158, 160
rmf_traffic::schedule::Negotiation::Table::Viewer::View

(C++ type), 151, 157, 159
rmf_traffic::schedule::Negotiation::Table::ViewerPtr

(C++ type), 150, 155
rmf_traffic::schedule::Negotiation::TablePtr

236 Index

rmf_traffic, Release 1.0.0

(C++ type), 147
rmf_traffic::schedule::Negotiation::VersionedKey

(C++ struct), 22, 153
rmf_traffic::schedule::Negotiation::VersionedKey::operator!=

(C++ function), 22, 153
rmf_traffic::schedule::Negotiation::VersionedKey::operator==

(C++ function), 22, 153
rmf_traffic::schedule::Negotiation::VersionedKey::participant

(C++ member), 22, 153
rmf_traffic::schedule::Negotiation::VersionedKey::version

(C++ member), 22, 153
rmf_traffic::schedule::Negotiation::VersionedKeySequence

(C++ type), 146
rmf_traffic::schedule::Negotiator (C++

class), 162
rmf_traffic::schedule::Negotiator::~Negotiator

(C++ function), 162
rmf_traffic::schedule::Negotiator::respond

(C++ function), 162
rmf_traffic::schedule::Negotiator::Responder

(C++ class), 162, 164
rmf_traffic::schedule::Negotiator::Responder::~Responder

(C++ function), 163, 164
rmf_traffic::schedule::Negotiator::Responder::Alternatives

(C++ type), 162, 164
rmf_traffic::schedule::Negotiator::Responder::ApprovalCallback

(C++ type), 162, 164
rmf_traffic::schedule::Negotiator::Responder::forfeit

(C++ function), 163, 164
rmf_traffic::schedule::Negotiator::Responder::ItineraryVersion

(C++ type), 162, 164
rmf_traffic::schedule::Negotiator::Responder::ParticipantId

(C++ type), 162, 164
rmf_traffic::schedule::Negotiator::Responder::reject

(C++ function), 163, 164
rmf_traffic::schedule::Negotiator::Responder::submit

(C++ function), 163, 164
rmf_traffic::schedule::Negotiator::Responder::UpdateVersion

(C++ type), 162, 164
rmf_traffic::schedule::Negotiator::ResponderPtr

(C++ type), 162
rmf_traffic::schedule::Negotiator::TableViewerPtr

(C++ type), 162
rmf_traffic::schedule::operator!= (C++

function), 213
rmf_traffic::schedule::operator== (C++

function), 214
rmf_traffic::schedule::ParticipantDescription

(C++ class), 165
rmf_traffic::schedule::ParticipantDescription::name

(C++ function), 165
rmf_traffic::schedule::ParticipantDescription::operator!=

(C++ function), 165
rmf_traffic::schedule::ParticipantDescription::operator==

(C++ function), 165
rmf_traffic::schedule::ParticipantDescription::owner

(C++ function), 165
rmf_traffic::schedule::ParticipantDescription::ParticipantDescription

(C++ function), 165
rmf_traffic::schedule::ParticipantDescription::profile

(C++ function), 166
rmf_traffic::schedule::ParticipantDescription::responsiveness

(C++ function), 166
rmf_traffic::schedule::ParticipantDescription::Rx

(C++ enum), 165
rmf_traffic::schedule::ParticipantDescription::Rx::Invalid

(C++ enumerator), 165
rmf_traffic::schedule::ParticipantDescription::Rx::Responsive

(C++ enumerator), 165
rmf_traffic::schedule::ParticipantDescription::Rx::Unresponsive

(C++ enumerator), 165
rmf_traffic::schedule::ParticipantDescriptionsMap

(C++ type), 221
rmf_traffic::schedule::ParticipantId

(C++ type), 221
rmf_traffic::schedule::Patch (C++ class),

166
rmf_traffic::schedule::Patch::base_iterator

(C++ type), 166
rmf_traffic::schedule::Patch::base_version

(C++ function), 167
rmf_traffic::schedule::Patch::begin

(C++ function), 166
rmf_traffic::schedule::Patch::const_iterator

(C++ type), 166
rmf_traffic::schedule::Patch::cull (C++

function), 167
rmf_traffic::schedule::Patch::end (C++

function), 167
rmf_traffic::schedule::Patch::latest_version

(C++ function), 167
rmf_traffic::schedule::Patch::Participant

(C++ class), 167, 168
rmf_traffic::schedule::Patch::Participant::additions

(C++ function), 167, 168
rmf_traffic::schedule::Patch::Participant::delays

(C++ function), 167, 168
rmf_traffic::schedule::Patch::Participant::erasures

(C++ function), 167, 168
rmf_traffic::schedule::Patch::Participant::itinerary_version

(C++ function), 167, 168
rmf_traffic::schedule::Patch::Participant::Participant

(C++ function), 167, 168
rmf_traffic::schedule::Patch::Participant::participant_id

(C++ function), 167, 168
rmf_traffic::schedule::Patch::Participant::progress

(C++ function), 168, 169
rmf_traffic::schedule::Patch::Patch

Index 237

rmf_traffic, Release 1.0.0

(C++ function), 166
rmf_traffic::schedule::Patch::size (C++

function), 167
rmf_traffic::schedule::ProgressVersion

(C++ type), 222
rmf_traffic::schedule::Query (C++ class),

169
rmf_traffic::schedule::Query::base_iterator

(C++ type), 169
rmf_traffic::schedule::Query::Participants

(C++ class), 169, 175
rmf_traffic::schedule::Query::participants

(C++ function), 169
rmf_traffic::schedule::Query::Participants::All

(C++ class), 171, 177, 178
rmf_traffic::schedule::Query::Participants::all

(C++ function), 170, 176
rmf_traffic::schedule::Query::Participants::Exclude

(C++ class), 171, 177, 178
rmf_traffic::schedule::Query::Participants::exclude

(C++ function), 170, 176
rmf_traffic::schedule::Query::Participants::Exclude::Exclude

(C++ function), 171, 177, 178
rmf_traffic::schedule::Query::Participants::Exclude::get_ids

(C++ function), 171, 177, 178
rmf_traffic::schedule::Query::Participants::Exclude::set_ids

(C++ function), 171, 177, 178
rmf_traffic::schedule::Query::Participants::get_mode

(C++ function), 170, 176
rmf_traffic::schedule::Query::Participants::Include

(C++ class), 171, 177, 178
rmf_traffic::schedule::Query::Participants::include

(C++ function), 170, 176
rmf_traffic::schedule::Query::Participants::Include::get_ids

(C++ function), 171, 177, 179
rmf_traffic::schedule::Query::Participants::Include::Include

(C++ function), 171, 177, 179
rmf_traffic::schedule::Query::Participants::Include::set_ids

(C++ function), 171, 177, 179
rmf_traffic::schedule::Query::Participants::make_all

(C++ function), 171, 176
rmf_traffic::schedule::Query::Participants::make_all_except

(C++ function), 171, 177
rmf_traffic::schedule::Query::Participants::make_only

(C++ function), 171, 176
rmf_traffic::schedule::Query::Participants::Mode

(C++ enum), 170, 176
rmf_traffic::schedule::Query::Participants::Mode::All

(C++ enumerator), 170, 176
rmf_traffic::schedule::Query::Participants::Mode::Exclude

(C++ enumerator), 170, 176
rmf_traffic::schedule::Query::Participants::Mode::Include

(C++ enumerator), 170, 176
rmf_traffic::schedule::Query::Participants::Mode::Invalid

(C++ enumerator), 170, 176
rmf_traffic::schedule::Query::Participants::Participants

(C++ function), 170, 176
rmf_traffic::schedule::Query::Spacetime

(C++ class), 171, 179
rmf_traffic::schedule::Query::spacetime

(C++ function), 169
rmf_traffic::schedule::Query::Spacetime::All

(C++ class), 173, 181, 183
rmf_traffic::schedule::Query::Spacetime::get_mode

(C++ function), 173, 180
rmf_traffic::schedule::Query::Spacetime::Mode

(C++ enum), 172, 179
rmf_traffic::schedule::Query::Spacetime::Mode::All

(C++ enumerator), 172, 179
rmf_traffic::schedule::Query::Spacetime::Mode::Invalid

(C++ enumerator), 172, 179
rmf_traffic::schedule::Query::Spacetime::Mode::Regions

(C++ enumerator), 172, 179
rmf_traffic::schedule::Query::Spacetime::Mode::Timespan

(C++ enumerator), 172, 179
rmf_traffic::schedule::Query::Spacetime::query_all

(C++ function), 173, 180
rmf_traffic::schedule::Query::Spacetime::query_regions

(C++ function), 173, 180
rmf_traffic::schedule::Query::Spacetime::query_timespan

(C++ function), 173, 181
rmf_traffic::schedule::Query::Spacetime::Regions

(C++ class), 173, 181, 183
rmf_traffic::schedule::Query::Spacetime::regions

(C++ function), 173, 181
rmf_traffic::schedule::Query::Spacetime::Regions::begin

(C++ function), 174, 181, 183
rmf_traffic::schedule::Query::Spacetime::Regions::cbegin

(C++ function), 174, 181, 184
rmf_traffic::schedule::Query::Spacetime::Regions::cend

(C++ function), 174, 182, 184
rmf_traffic::schedule::Query::Spacetime::Regions::const_iterator

(C++ type), 174, 181, 183
rmf_traffic::schedule::Query::Spacetime::Regions::end

(C++ function), 174, 182, 184
rmf_traffic::schedule::Query::Spacetime::Regions::erase

(C++ function), 174, 181, 183
rmf_traffic::schedule::Query::Spacetime::Regions::iterator

(C++ type), 174, 181, 183
rmf_traffic::schedule::Query::Spacetime::Regions::pop_back

(C++ function), 174, 181, 183
rmf_traffic::schedule::Query::Spacetime::Regions::push_back

(C++ function), 174, 181, 183
rmf_traffic::schedule::Query::Spacetime::Regions::size

(C++ function), 174, 182, 184
rmf_traffic::schedule::Query::Spacetime::Space

(C++ type), 172, 179
rmf_traffic::schedule::Query::Spacetime::Spacetime

238 Index

rmf_traffic, Release 1.0.0

(C++ function), 172, 180
rmf_traffic::schedule::Query::Spacetime::Timespan

(C++ class), 174, 182, 184
rmf_traffic::schedule::Query::Spacetime::timespan

(C++ function), 173, 181
rmf_traffic::schedule::Query::Spacetime::Timespan::add_map

(C++ function), 174, 182, 184
rmf_traffic::schedule::Query::Spacetime::Timespan::all_maps

(C++ function), 174, 175, 182, 184
rmf_traffic::schedule::Query::Spacetime::Timespan::clear_maps

(C++ function), 174, 182, 184
rmf_traffic::schedule::Query::Spacetime::Timespan::get_lower_time_bound

(C++ function), 175, 182, 184
rmf_traffic::schedule::Query::Spacetime::Timespan::get_upper_time_bound

(C++ function), 175, 182, 185
rmf_traffic::schedule::Query::Spacetime::Timespan::maps

(C++ function), 174, 182, 184
rmf_traffic::schedule::Query::Spacetime::Timespan::remove_lower_time_bound

(C++ function), 175, 182, 185
rmf_traffic::schedule::Query::Spacetime::Timespan::remove_map

(C++ function), 174, 182, 184
rmf_traffic::schedule::Query::Spacetime::Timespan::remove_upper_time_bound

(C++ function), 175, 182, 185
rmf_traffic::schedule::Query::Spacetime::Timespan::set_lower_time_bound

(C++ function), 175, 182, 184
rmf_traffic::schedule::Query::Spacetime::Timespan::set_upper_time_bound

(C++ function), 175, 182, 185
rmf_traffic::schedule::query_all (C++

function), 214
rmf_traffic::schedule::QuickestFinishEvaluator

(C++ class), 185
rmf_traffic::schedule::QuickestFinishEvaluator::choose

(C++ function), 185
rmf_traffic::schedule::RectificationRequester

(C++ class), 185
rmf_traffic::schedule::RectificationRequester::~RectificationRequester

(C++ function), 186
rmf_traffic::schedule::RectificationRequesterFactory

(C++ class), 186
rmf_traffic::schedule::RectificationRequesterFactory::~RectificationRequesterFactory

(C++ function), 186
rmf_traffic::schedule::RectificationRequesterFactory::make

(C++ function), 186
rmf_traffic::schedule::Rectifier (C++

class), 187
rmf_traffic::schedule::Rectifier::correct_id

(C++ function), 187
rmf_traffic::schedule::Rectifier::current_version

(C++ function), 187
rmf_traffic::schedule::Rectifier::get_description

(C++ function), 187
rmf_traffic::schedule::Rectifier::get_id

(C++ function), 187
rmf_traffic::schedule::Rectifier::Range

(C++ struct), 22, 187
rmf_traffic::schedule::Rectifier::Range::lower

(C++ member), 23, 188
rmf_traffic::schedule::Rectifier::Range::upper

(C++ member), 23, 188
rmf_traffic::schedule::Rectifier::retransmit

(C++ function), 187
rmf_traffic::schedule::SimpleResponder

(C++ class), 188
rmf_traffic::schedule::SimpleResponder::ApprovalMap

(C++ type), 188
rmf_traffic::schedule::SimpleResponder::blockers

(C++ function), 189
rmf_traffic::schedule::SimpleResponder::BlockerSet

(C++ type), 188
rmf_traffic::schedule::SimpleResponder::forfeit

(C++ function), 189
rmf_traffic::schedule::SimpleResponder::make

(C++ function), 189
rmf_traffic::schedule::SimpleResponder::reject

(C++ function), 189
rmf_traffic::schedule::SimpleResponder::SimpleResponder

(C++ function), 188
rmf_traffic::schedule::SimpleResponder::submit

(C++ function), 189
rmf_traffic::schedule::Snappable (C++

class), 189
rmf_traffic::schedule::Snappable::~Snappable

(C++ function), 190
rmf_traffic::schedule::Snappable::snapshot

(C++ function), 190
rmf_traffic::schedule::Snapshot (C++

class), 190
rmf_traffic::schedule::StorageId (C++

type), 222
rmf_traffic::schedule::StubbornNegotiator

(C++ class), 190
rmf_traffic::schedule::StubbornNegotiator::acceptable_waits

(C++ function), 191
rmf_traffic::schedule::StubbornNegotiator::additional_margins

(C++ function), 191
rmf_traffic::schedule::StubbornNegotiator::respond

(C++ function), 191
rmf_traffic::schedule::StubbornNegotiator::StubbornNegotiator

(C++ function), 191
rmf_traffic::schedule::StubbornNegotiator::UpdateVersion

(C++ type), 190
rmf_traffic::schedule::Version (C++ type),

222
rmf_traffic::schedule::Viewer (C++ class),

192
rmf_traffic::schedule::Viewer::~Viewer

(C++ function), 193
rmf_traffic::schedule::Viewer::get_participant

Index 239

rmf_traffic, Release 1.0.0

(C++ function), 192
rmf_traffic::schedule::Viewer::latest_version

(C++ function), 193
rmf_traffic::schedule::Viewer::participant_ids

(C++ function), 192
rmf_traffic::schedule::Viewer::query

(C++ function), 192
rmf_traffic::schedule::Viewer::View

(C++ class), 193, 194
rmf_traffic::schedule::Viewer::View::base_iterator

(C++ type), 193, 194
rmf_traffic::schedule::Viewer::View::begin

(C++ function), 193, 194
rmf_traffic::schedule::Viewer::View::const_iterator

(C++ type), 193, 194
rmf_traffic::schedule::Viewer::View::Element

(C++ struct), 23, 193, 194
rmf_traffic::schedule::Viewer::View::Element::description

(C++ member), 23, 193, 194
rmf_traffic::schedule::Viewer::View::Element::participant

(C++ member), 23, 193, 194
rmf_traffic::schedule::Viewer::View::Element::plan_id

(C++ member), 23, 193, 194
rmf_traffic::schedule::Viewer::View::Element::route

(C++ member), 23, 193, 194
rmf_traffic::schedule::Viewer::View::Element::route_id

(C++ member), 23, 193, 194
rmf_traffic::schedule::Viewer::View::end

(C++ function), 193, 194
rmf_traffic::schedule::Viewer::View::iterator

(C++ type), 193, 194
rmf_traffic::schedule::Viewer::View::size

(C++ function), 193, 194
rmf_traffic::schedule::Writer (C++ class),

195
rmf_traffic::schedule::Writer::~Writer

(C++ function), 197
rmf_traffic::schedule::Writer::CheckpointId

(C++ type), 195
rmf_traffic::schedule::Writer::clear

(C++ function), 197
rmf_traffic::schedule::Writer::delay

(C++ function), 196
rmf_traffic::schedule::Writer::Duration

(C++ type), 195
rmf_traffic::schedule::Writer::extend

(C++ function), 196
rmf_traffic::schedule::Writer::Itinerary

(C++ type), 195
rmf_traffic::schedule::Writer::ItineraryVersion

(C++ type), 195
rmf_traffic::schedule::Writer::ParticipantDescription

(C++ type), 195
rmf_traffic::schedule::Writer::ParticipantId

(C++ type), 195
rmf_traffic::schedule::Writer::PlanId

(C++ type), 195
rmf_traffic::schedule::Writer::ProgressVersion

(C++ type), 195
rmf_traffic::schedule::Writer::reached

(C++ function), 196
rmf_traffic::schedule::Writer::register_participant

(C++ function), 197
rmf_traffic::schedule::Writer::Registration

(C++ class), 197, 198
rmf_traffic::schedule::Writer::Registration::id

(C++ function), 197, 198
rmf_traffic::schedule::Writer::Registration::last_itinerary_version

(C++ function), 198
rmf_traffic::schedule::Writer::Registration::last_plan_id

(C++ function), 198, 199
rmf_traffic::schedule::Writer::Registration::next_storage_base

(C++ function), 198, 199
rmf_traffic::schedule::Writer::Registration::Registration

(C++ function), 197, 198
rmf_traffic::schedule::Writer::RouteId

(C++ type), 195
rmf_traffic::schedule::Writer::set (C++

function), 196
rmf_traffic::schedule::Writer::StorageId

(C++ type), 195
rmf_traffic::schedule::Writer::unregister_participant

(C++ function), 197
rmf_traffic::schedule::Writer::update_description

(C++ function), 197
rmf_traffic::Time (C++ type), 222
rmf_traffic::time::apply_offset (C++

function), 214
rmf_traffic::time::from_seconds (C++

function), 215
rmf_traffic::time::to_seconds (C++ func-

tion), 215
rmf_traffic::Trajectory (C++ class), 199
rmf_traffic::Trajectory::at (C++ function),

200
rmf_traffic::Trajectory::back (C++ func-

tion), 201
rmf_traffic::Trajectory::base_iterator

(C++ class), 202, 205
rmf_traffic::Trajectory::base_iterator::base_iterator

(C++ function), 203, 206
rmf_traffic::Trajectory::base_iterator::operator

const_iterator (C++ function), 203, 206
rmf_traffic::Trajectory::base_iterator::operator!=

(C++ function), 202, 205
rmf_traffic::Trajectory::base_iterator::operator*

(C++ function), 202, 205
rmf_traffic::Trajectory::base_iterator::operator++

240 Index

rmf_traffic, Release 1.0.0

(C++ function), 202, 205
rmf_traffic::Trajectory::base_iterator::operator=

(C++ function), 203, 206
rmf_traffic::Trajectory::base_iterator::operator==

(C++ function), 202, 205
rmf_traffic::Trajectory::base_iterator::operator--

(C++ function), 202, 205
rmf_traffic::Trajectory::base_iterator::operator->

(C++ function), 202, 205
rmf_traffic::Trajectory::base_iterator::operator>

(C++ function), 203, 206
rmf_traffic::Trajectory::base_iterator::operator>=

(C++ function), 203, 206
rmf_traffic::Trajectory::base_iterator::operator<

(C++ function), 203, 205
rmf_traffic::Trajectory::base_iterator::operator<=

(C++ function), 203, 206
rmf_traffic::Trajectory::begin (C++ func-

tion), 201
rmf_traffic::Trajectory::cbegin (C++

function), 201
rmf_traffic::Trajectory::cend (C++ func-

tion), 201
rmf_traffic::Trajectory::const_iterator

(C++ type), 199
rmf_traffic::Trajectory::duration (C++

function), 202
rmf_traffic::Trajectory::empty (C++ func-

tion), 202
rmf_traffic::Trajectory::end (C++ func-

tion), 201
rmf_traffic::Trajectory::erase (C++ func-

tion), 200, 201
rmf_traffic::Trajectory::find (C++ func-

tion), 200
rmf_traffic::Trajectory::finish_time

(C++ function), 202
rmf_traffic::Trajectory::front (C++ func-

tion), 201
rmf_traffic::Trajectory::index_after

(C++ function), 200
rmf_traffic::Trajectory::insert (C++

function), 199, 200
rmf_traffic::Trajectory::InsertionResult

(C++ struct), 23, 203
rmf_traffic::Trajectory::InsertionResult::inserted

(C++ member), 24, 203
rmf_traffic::Trajectory::InsertionResult::it

(C++ member), 24, 203
rmf_traffic::Trajectory::iterator (C++

type), 199
rmf_traffic::Trajectory::lower_bound

(C++ function), 200
rmf_traffic::Trajectory::operator= (C++

function), 199
rmf_traffic::Trajectory::operator[]

(C++ function), 200
rmf_traffic::Trajectory::size (C++ func-

tion), 202
rmf_traffic::Trajectory::start_time

(C++ function), 201
rmf_traffic::Trajectory::Trajectory

(C++ function), 199
rmf_traffic::Trajectory::Waypoint (C++

class), 203, 206
rmf_traffic::Trajectory::Waypoint::adjust_times

(C++ function), 204, 207
rmf_traffic::Trajectory::Waypoint::change_time

(C++ function), 204, 207
rmf_traffic::Trajectory::Waypoint::index

(C++ function), 204, 207
rmf_traffic::Trajectory::Waypoint::position

(C++ function), 203, 206
rmf_traffic::Trajectory::Waypoint::time

(C++ function), 204, 207
rmf_traffic::Trajectory::Waypoint::velocity

(C++ function), 203, 204, 207

S
std::hash<rmf_traffic::agv::LaneClosure>

(C++ struct), 24
std::hash<rmf_traffic::agv::LaneClosure>::operator()

(C++ function), 24

Index 241

	rmf_traffic API
	File Hierarchy
	Full API

	Index

