rmf_task
Release 1.0.0

Open Source Robotics Corporation

Mar 09, 2022

CONTENTS:

1 rmf_task API 3
I.1 ClassHierarchy e 3
1.2 FileHierarchy e e e e 3
1.3 Full APL . . . 3
Index 85

rmf_task, Release 1.0.0

A package for managing tasks in OpenRMF.

CONTENTS: 1

rmf_task, Release 1.0.0

2 CONTENTS:

CHAPTER
ONE

RMF_TASK API

1.1 Class Hierarchy
1.2 File Hierarchy
1.3 Full API

1.3.1 Namespaces

Namespace rmf_task

Contents
i N(HTLES]JLICC’S
e Classes

e Functions

* Typedefs

Namespaces

e Namespace rmf_task::detail
* Namespace rmf_task::events
* Namespace rmf _task::phases

* Namespace rmf _task::requests

rmf_task, Release 1.0.0

Classes

Template Struct CompositeData::InsertResult

Struct Description::Info
Class Activator

Class BackupFileManager

Class BackupFileManager::Group
Class BackupFileManager::Robot

Class BinaryPriorityScheme
Class CompositeData
Class Constraints

Class Estimate

Class Event

Class Event::AssignlD
Class Event::Snapshot
Class Event::State

Class Header

Class Log

Class Log::Entry

Class Log::Reader
Class Reader::Iterable
Class Iterable: :iterator
Class Log::View

Class Parameters

Class Payload

Class Payload::Component
Class Phase

Class Phase::Active
Class Phase::Completed
Class Phase::Pending
Class Phase::Snapshot
Class Phase::Tag

Class Request

Class RequestFactory
Class State

Class Task

Class Task::Active

Chapter 1. rmf_task API

rmf_task, Release 1.0.0

* Class Task::Booking

* Class Task::Description

e Class Task::Model

* Class Task::Tag

e Class TaskPlanner

* Class TaskPlanner::Assignment

* Class TaskPlanner::Configuration

* Class TaskPlanner::Options

e Class TravelEstimator

e Class TravelEstimator::Result

* Class VersionedString

* Class VersionedString::Reader

* Class VersionedString::View

Functions

» Function rmf _task::standard_waypoint_name

Typedefs

* Dypedef rmf_task:
» Typedef rmf _task:
* Typedef rmf_task::
* Typedef rmf_task::
* Dypedef rmf_task:
» Typedef rmf_task::
* Typedef rmf_task::
* Typedef rmf_task::
* Typedef rmf_task::
* Typedef rmf_task::
* Typedef rmf_task::
* Typedef rmf_task:
o Typedef rmf _task:

:ActivatorPtr

:ConstActivatorPtr

ConstCostCalculatorPtr

ConstLogPtr

:ConstParametersPtr

ConstPriorityPtr
ConstRequestFactoryPtr
ConstRequestPtr
ConstTravel EstimatorPtr
CostCalculatorPtr

PriorityPtr

:RequestFactoryPtr

:RequestPtr

1.3. Full API

rmf_task, Release 1.0.0

Namespace rmf_task::detail

Contents

e Classes

e Functions

Classes

e Class Backup

e Class Resume

Functions

o Template Function rmf_task::detail::insertion_cast

Namespace rmf_task::events

Contents

e Classes

* Typedefs

Classes

* Class SimpleEventState

Typedefs

o Typedef rmf_task::events::SimpleEventStatePtr

Namespace rmf_task::phases

Contents

e Classes

6 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Classes

* Class RestoreBackup

* Class RestoreBackup::Active

Namespace rmf_task::requests

Contents

e Classes

Classes

* Class ChargeBattery

* Class ChargeBattery::Description
* Class ChargeBatteryFactory

e Class Clean

* Class Clean::Description

* Class Delivery

* Class Delivery::Description

e Class Loop

* Class Loop::Description

* Class ParkRobotFactory

1.3.2 Classes and Structs

Template Struct CompositeData::InsertResult

* Defined in file_latest_rmf_task_include_rmf task_CompositeData.hpp

Nested Relationships

This struct is a nested type of Class CompositeData.

1.3. Full API 7

rmf_task, Release 1.0.0

Struct Documentation

template<typename T>
struct rmf_task::CompositeData::InsertResult
The result of performing an insertion operation.

Public Members

bool inserted

True if the value was inserted. This means that an entry of value T did not already exist before you

performed the insertion.

T *value
A reference to the value of type T that currently exists within the CompositeData.

Struct Description::Info
* Defined in file_latest_rmf task_include_rmf task_Task.hpp
Nested Relationships

This struct is a nested type of Class Task::Description.

Struct Documentation

struct rmf_task::Task::Description::Info

Public Members

std::string category

std::string detail

Class Activator
* Defined in file_latest_rmf_task_include_rmf_task_Activator.hpp
Class Documentation

class rmf_task::Activator
A factory for generating 7ask::Active instances from requests.

8 Chapter 1.

rmf_task API

rmf_task, Release 1.0.0

Public Types

using Activate = std::function<7ask::ActivePtr (const std::function<State)
> &get_stateconst ConstParametersPtr ¶meters, const Task::ConstBooking Ptr
&booking, const Description &description, std::optional<std::string> backup_state,
std::function<voidPhase::ConstSnapshotPtr> update, std::function<voidZask::Active::Backup>
checkpoint, std::function<voidPhase::ConstCompletedPtr> phase_finished, std::function<void>
task_finished>Signature for activating a task

Return an active, running instance of the requested task.
Template Parameters
* Description: A class that implements the 7ask::Description interface
Parameters
* [in] get_state: A callback for retrieving the current state of the robot
* [in] parameters: A reference to the parameters for the robot
* [in] booking: An immutable reference to the booking information for the task
* [in] description: The down-casted description of the task

* [in] backup_state: The serialized backup state of the Task, if the Tusk is being restored
from a crash or disconnection. If the 7ask is not being restored, a std::nullopt will be passed in
here.

* [in] update: A callback that will be triggered when the task has a significant update in its
status.

* [in] checkpoint: A callback that will be triggered when the task has reached a task check-
point whose state is worth backing up.

* [in] finished: A callback that will be triggered when the task has finished.

Public Functions
Activator ()
Construct an empty TaskFactory.

template<typename Description>
void add_activator (Activate<Description> activator)
Add a callback to convert from a Description into an active 7ask.

Template Parameters

* Description: A class that implements the Request::Description interface
Parameters

* [in] activator: A callback that activates a 7ask matching the Description

Task::ActivePtr activate (const std::function<Stare)
> &get_stateconst ConstParametersPtr ~ ¶meters, const Request &request,
std::function<voidPhase::ConstSnapshotPtr> update, std::function<void7ask::Active::Backup> check-
point, std::function<voidPhase::ConstCompletedPtr> phase_finished, std::function<void> task_finished
constActivate a Task object based on a Request.

1.3. Full API 9

rmf_task, Release 1.0.0

Return an active, running instance of the requested task.

Parameters

[in]
[in]
[in]
[in]

[in]

get_state: A callback for retrieving the current state of the robot

parameters: A reference to the parameters for the robot

request: The task request

update: A callback that will be triggered when the task has a significant update
checkpoint: A callback that will be triggered when the task has reached a task check-

point whose state is worth backing up.

[in]

[in]

phase_finished: A callback that will be triggered whenever a task phase is finished
task_finished: A callback that will be triggered when the task has finished

Task::ActivePtr restore (const std::function<Srate)

> &get_stateconst ConstParametersPtr ¶meters, const Request &re-
std::string backup_state, std::function<voidPhase::ConstSnapshotPtr> update,
std::function<voidTask::Active::Backup> checkpoint, std::function<voidPhase::ConstCompletedPtr>
phase_finished, std::function<void> task_finished constRestore a Tusk that crashed or disconnected.

quest,

Return an active, running instance of the requested task.

Parameters

[in]
[in]
[in]
[in]
[in]

[in]

get_state: A callback for retrieving the current state of the robot
parameters: A reference to the parameters for the robot

request: The task request

backup_state: The serialized backup state of the Task

update: A callback that will be triggered when the task has a significant update

checkpoint: A callback that will be triggered when the task has reached a task check-

point whose state is worth backing up.

[in]

[in]

phase_finished: A callback that will be triggered whenever a task phase is finished

task_finished: A callback that will be triggered when the task has finished

Class BackupFileManager

¢ Defined in file_latest_rmf_task_include_rmf_task_BackupFileManager.hpp

10

Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Nested Relationships

Nested Types

* Class BackupFileManager::Group
* Class BackupFileManager::Robot

Class Documentation

class rmf_task::BackupFileManager

Public Functions

BackupFileManager (std::filesystem::path root_directory, std::function<void) std::string
> info_logger = nullptr, std::function<voidstd::string> debug_logger = nullptrConstruct a BackupFileM-
anager

Parameters
* [in] root_directory: Specify the root directory that the backup files should live in

BackupFileManager &clear_on_startup (bool value = true)
Set whether any previously existing backups should be cleared out on startup. By default this behavior is
turned OFF.

Parameters
e [in] wvalue: True if the behavior should be turned on; false if it should be turned off.

BackupFileManager &clear_ on_shutdown (bool value = true)
Set whether any currently existing backups should be cleared out on shutdown. By default this behavior is
turned ON.

Parameters
e [in] wvalue: True if the behavior should be turned on; false if it should be turned off.

std::shared_ptr<Group> make_group (std::string name)
Make a group (a.k.a. fleet) to back up.

class Group

1.3.

Full API 11

rmf_task, Release 1.0.0

Public Functions

std::shared_ptr<Robot> make_robot (std::string name)
Make a handle to backup a robot for this group

Parameters
* [in] name: The unique name of the robot that’s being backed up

class Robot

Public Functions

std::optional<std::string> read () const

Read a backup state from file if a backup file exists for this robot. If a backup does not exist, return a

nullopt.

void write (const Tuask::Active::Backup &backup)
Write a backup to file.

Class BackupFileManager::Group

* Defined in file_latest_rmf_task_include_rmf_task_BackupFileManager.hpp

Nested Relationships

This class is a nested type of Class BackupFileManager.

Class Documentation

class rmf_task::BackupFileManager: :Group

Public Functions

std::shared_ptr<Robot>make_robot (std::string name)
Make a handle to backup a robot for this group

Parameters

* [in] name: The unique name of the robot that’s being backed up

12 Chapter 1.

rmf_task API

rmf_task, Release 1.0.0

Class BackupFileManager::Robot

* Defined in file_latest_rmf_task_include_rmf_task_BackupFileManager.hpp

Nested Relationships

This class is a nested type of Class BackupFileManager.

Class Documentation

class rmf_task::BackupFileManager: :Robot

Public Functions

std::optional<std::string> read () const
Read a backup state from file if a backup file exists for this robot. If a backup does not exist, return a
nullopt.

void write (const Tuask::Active::Backup &backup)
Write a backup to file.

Class BinaryPriorityScheme

* Defined in file_latest_rmf_task_include_rmf_task_BinaryPriorityScheme.hpp

Class Documentation

class rmf_task::BinaryPriorityScheme
A class that serves as a binary prioritization scheme by genrating either high or low Priority objects for requests.

Public Static Functions
static std::shared_ptr<Priority> make_low_priority ()
Use these to assign the task priority In the current implementation this returns a nullptr.

static std::shared_ptr<Priority> make_high_priority ()
Get a shared pointer to a high priority object of the binary prioritization scheme.

static std::shared_ptr<CostCalculator> make_cost_calculator ()
Use this to give the appropriate cost calculator to the task planner.

1.3. Full API 13

rmf_task, Release 1.0.0

Class CompositeData

* Defined in file_latest_rmf_task_include_rmf_task_CompositeData.hpp

Nested Relationships

Nested Types

» Template Struct CompositeData::InsertResult

Inheritance Relationships

Derived Type

e public rmf_task::State (Class State)

Class Documentation

class rmf_task::CompositeData

A class that can store and return arbitrary data structures, as long as they are copyable.

Subclassed by rmf _task::State

Public Functions

CompositeData ()
Create an empty CompositeData.

template<typename T>

InsertResuli<T> insert (T &&value)
Attempt to insert some data structure into the CompositeData. If a data structure of type T already exists
in the CompositeData, then this function will have no effect, and InsertResult<T>::value will point to the
value that already existed in the CompositeData.

Parameters
* [in] wvalue: The value to attempt to insert.

template<typename T>

InsertResult<T> insert_or_assign (T &&value)
Insert or assign some data structure into the CompositeData. If a data structure of type T already exists in
the CompositeData, then this function will overwrite it with the new value.

Parameters
* [in] wvalue: The value to insert or assign.

template<typename T>
CompositeData &with (T &&value)
Same as insert_or_assign, but *this is returned instead of the new value.

14

Chapter 1. rmf_task API

rmf_task, Release 1.0.0

template<typename T>

T *get ()
Get areference to a data structure of type T if one is available in the CompositeData. If one is not available,
this will return a nullptr.

template<typename T>

const 7 *get () const
Get a reference to an immutable data structure of type T if one is available in the CompositeData. If one
is not available, this will return a nullptr.

template<typename T>

bool erase ()
Erase the data structure of type T if one is available in the CompositeData. This will return true if it was
erased, or false if type T was not available.

void clear ()
Remove all data structures from this CompositeData.

template<typename T>
auto insert (T &&value) -> InsertResult<T>

template<typename T>
auto insert_or_assign (T &&value) -> InsertResult<T>

template<typename T>
struct InsertResult
The result of performing an insertion operation.

Public Members
bool inserted

True if the value was inserted. This means that an entry of value T did not already exist before you
performed the insertion.

T *value
A reference to the value of type T that currently exists within the CompositeData.

Class Constraints

* Defined in file_latest_rmf_task_include_rmf_task_Constraints.hpp

Class Documentation

class rmf_task::Constraints
A class that describes constraints that are common among the agents/AGVs available for performing requests

1.3. Full API 15

rmf_task, Release 1.0.0

Public Functions

Constraints (double threshold_soc, double recharge_soc = 1.0, bool drain_battery = true)
Constructor

Parameters

* [in] threshold_soc: Minimum charge level the vehicle is allowed to deplete to. This value
needs to be between 0.0 and 1.0.

* [in] recharge_soc: The charge level the vehicle should be recharged to. This value needs
to be between 0.0 and 1.0. Default value is 1.0.

* [in] drain_battery: If true, battery drain will be considered during task allocation and
ChargeBattery tasks will automatically be included if necessary.

double threshold _soc () const
Gets the vehicle’s state of charge threshold value.

Constraints &threshold_soc (double threshold_soc)
Sets the vehicle’s state of charge threshold value. This value needs to be between 0.0 and 1.0.

double recharge_soc () const
Gets the vehicle’s state of charge recharge value.

Constraints &recharge_soc (double recharge_soc)
Sets the vehicle’s recharge state of charge value. This value needs to be between 0.0 and 1.0.

bool drain_battery () const
Get the value of drain_battery.

Constraints &drain_battery (bool drain_battery)
Set the value of drain_battery.

Class Backup

* Defined in file_latest_rmf_task_include_rmf_task_detail_Backup.hpp

Class Documentation

class rmf_task::detail: :Backup

Public Functions
uint64_t sequence () const
Get the sequence number for this backup.

Backup &sequence (uint64_t seq)
Set the sequence number for this backup.

const std::string &state () const
Get the serialized state for this backup.

Backup &state (std::string new_state)
Set the serialized state for this backup.

16 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Public Static Functions

static Backup make (uint64_t seq, std::string state)
Make a Backup state

Parameters

* [in] seq: Sequence number. The Backup from this phase with the highest sequence number
will be held onto until a Backup with a higher sequence number is issued.

* [in] state: A serialization of the phase’s state. This will be used by Activator when restoring
a Task.

Class Resume

* Defined in file_latest_rmf_task_include_rmf_task_detail_Resume.hpp

Class Documentation

class rmf_task::detail::Resume

Public Functions

void operator () () const
Call this object to tell the 7ask to resume.

Public Static Functions

static Resume make (std::function<void)
> callbackMake a Resume object. The callback will be triggered when the user triggers the Resume.

Class Estimate

* Defined in file_latest_rmf_task_include_rmf_task_Estimate.hpp

Class Documentation

class rmf_task::Estimate
A class to store the time that the AGV should wait till before executing the request and the state of the AGV
after finishing the request. Note: The wait time is different from the earliest_start_time specified in the request
definition. The wait time may be earlier to ensure that the AGV arrvies at the first location of the request by the
earliest_start_time

1.3. Full API 17

rmf_task, Release 1.0.0

Public Functions

Estimate (State finish_state, rmf_traffic::Time wait_until)
Constructor of an estimate of the request.

Parameters
* [in] finish_state: Finish state of the robot once it completes the request.
* [in] wait_until: The ideal time the robot starts executing this request.

State £inish state () const
Finish state of the robot once it completes the request.

Estimate &€inish_state (State new_finish_state)
Sets a new finish state for the robot.

rmf_traffic::Time wait_until () const
The ideal time the robot starts executing this request.

Estimate &wait_until (rmf traffic::Time new_wait_until)
Sets a new starting time for the robot to execute the request.

Class Event

* Defined in file_latest_rmf_task_include_rmf task_Event.hpp

Nested Relationships
Nested Types

* Class Event::AssignlD
* Class Event::Snapshot

e Class Event::State

Class Documentation

class rmf_task::Event

Public Types

enum Status
A simple computer-friendly indicator of the current status of this event. This enum may be used to auto-
matically identify when an event requires special attention, e.g. logging a warning or alerting an operator.

Values:

enumerator Uninitialized
The event status has not been initialized. This is a sentinel value that should not generally be used.

enumerator Blocked
The event is underway but it has been blocked. The blockage may require manual intervention to fix.

18 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

enumerator Error
An error has occurred that the 7ask implementation does not know how to deal with. Manual inter-
vention is needed to get the task back on track.

enumerator Failed
The event cannot ever finish correctly, even with manual intervention. This may mean that the 7ask
cannot be completed if it does not have an automated way to recover from this failure state.

enumerator Standby
The event is on standby. It cannot be started yet, and that is its expected status.

enumerator Underway
The event is underway, and proceeding as expected.

enumerator Delayed
The event is underway but it has been temporarily delayed.

enumerator Skipped
An operator has instructed this event to be skipped.

enumerator Canceled
An operator has instructed this event to be canceled.

enumerator Killed
An operator has instructed this event to be killed.

enumerator Completed
The event has completed.

using ConstStatePtr = std::shared_ptr<const Srate>
using ConstSnapshotPtr = std::shared_ptr<const Snapshor>

using AssignIDPtr = std::shared_ptr<const Assign/D>

Public Static Functions
static Status sequence_status (Status earlier, Status later)
Given the status of two events that are in sequence with each other, return the overall status of the sequence.

class AssignID
A utility class that helps to assign unique IDs to events.

Public Functions
AssignlID ()
Constructor.

uint64_t assign () const
Get a new unique ID.

1.3. Full API 19

rmf_task, Release 1.0.0

Public Static Functions
static AssignIDPtr make ()
Make a shared_ptr<AssignID>

class Snapshot : public rmf_task::Event::State
A snapshot of the state of an event. This snapshot can be read while the original event is arbitrarily
changed, and there is no risk of a race condition, as long as the snapshot is not being created while the
event is changing.

Public Functions
virtual uint64_t id () const final
The ID of this event, which is unique within its phase.

virtual Sratus status () const final
The current Status of this event.

virtual VersionedString::View name () const final
The “name” of this event. Ideally a short, simple piece of text that helps a human being intuit what
this event is expecting at a glance.

virtual VersionedString::View detail () const final
A detailed explanation of this event.

virtual Log::View log () const final
A view of the log for this event.

virtual std::vector<ConstStatePtr> dependencies () const final
Get more granular dependencies of this event, if any exist.

Public Static Functions
static ConstSnapshotPtr make (const State &other)
Make a snapshot of the current state of an Event.

class State
The interface to an active event.

Subclassed by rmf_task::Event::Snapshot, rmf_task::events::SimpleEventState
Public Types

using Status = Event::Status

using ConstStatePtr = Event::ConstStatePtr

20 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Public Functions
virtual uint64_t id () const =0
The ID of this event, which is unique within its phase.

virtual Starus status () const =0
The current Status of this event.

bool finished () const
A convenience function which returns true if the event’s status is any of Skipped, Canceled, Killed, or
Completed.

virtual VersionedString::View name () const =0
The “name” of this event. Ideally a short, simple piece of text that helps a human being intuit what
this event is expecting at a glance.

virtual VersionedString::View detail () const =0
A detailed explanation of this event.

virtual Log::View log () const =0
A view of the log for this event.

virtual std::vector<ConstStatePtr> dependencies () const =0
Get more granular dependencies of this event, if any exist.

virtual ~State () = default

Class Event::AssignID

* Defined in file_latest_rmf_task_include_rmf_task_Event.hpp

Nested Relationships

This class is a nested type of Class Event.

Class Documentation

class rmf_task::Event::AssignID
A utility class that helps to assign unique IDs to events.

Public Functions
AssignlID ()
Constructor.

uint64_t assign () const
Get a new unique ID.

1.3. Full API 21

rmf_task, Release 1.0.0

Public Static Functions

static AssignIDPtr make ()
Make a shared_ptr<AssignID>

Class Event::Snapshot

* Defined in file_latest_rmf_task_include_rmf task_Event.hpp

Nested Relationships

This class is a nested type of Class Event.

Inheritance Relationships
Base Type

e public rmf_task::Event: :State (Class Event::State)

Class Documentation

class rmf_task::Event: :Snapshot : public rmf_task::Event::State
A snapshot of the state of an event. This snapshot can be read while the original event is arbitrarily changed,
and there is no risk of a race condition, as long as the snapshot is not being created while the event is changing.

Public Functions

virtual uint64_t id () const final
The ID of this event, which is unique within its phase.

virtual Status status () const final
The current Status of this event.

virtual VersionedString::View name () const final
The “name” of this event. Ideally a short, simple piece of text that helps a human being intuit what this
event is expecting at a glance.

virtual VersionedString::View detail () const final
A detailed explanation of this event.

virtual Log::View log () const final
A view of the log for this event.

virtual std::vector<ConstStatePtr> dependencies () const final
Get more granular dependencies of this event, if any exist.

22 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Public Static Functions

static ConstSnapshotPtr make (const State &other)
Make a snapshot of the current state of an Event.

Class Event::State

* Defined in file_latest_rmf_task_include_rmf task_Event.hpp

Nested Relationships

This class is a nested type of Class Event.

Inheritance Relationships
Derived Types

e public rmf_task::Event::Snapshot (Class Event::Snapshot)

e public rmf_task::events::SimpleEventState (Class SimpleEventState)

Class Documentation

class rmf_task::Event::State
The interface to an active event.

Subclassed by rmf_task::Event::Snapshot, rmf_task::events::SimpleEventState

Public Types

using Status = Event::Status

using ConstStatePtr = Event::ConstStatePtr

Public Functions

virtual uint64_t id () const =0
The ID of this event, which is unique within its phase.

virtual Status status () const =0
The current Status of this event.

bool finished () const
A convenience function which returns true if the event’s status is any of Skipped, Canceled, Killed, or
Completed.

virtual VersionedString::View name () const =0
The “name” of this event. Ideally a short, simple piece of text that helps a human being intuit what this
event is expecting at a glance.

virtual VersionedString::View detail () const =0
A detailed explanation of this event.

1.3. Full API 23

rmf_task, Release 1.0.0

virtual Log::View log () const =0
A view of the log for this event.

virtual std::vector<ConstStatePtr> dependencies () const =0
Get more granular dependencies of this event, if any exist.

virtual ~State () = default

Class SimpleEventState

* Defined in file_latest_rmf_task_include_rmf_task_events_SimpleEventState.hpp

Inheritance Relationships

Base Type

e public rmf_task::Event: :State (Class Event::State)

Class Documentation

class rmf_task::events::SimpleEventState : public rmf_task::Event::State

This class is the simplest possible implementation for directly managing the required fields of the Event inter-
face.

This may be useful if you have a Phase implementation that takes care of the logic for tracking your event(s) but
you still need an Event object to satisfy the Phase interface’s finish_event() function. Your Phase implementa-
tion can create an instance of this class and then manage its fields directly.

Public Functions

virtual uint64_t id () const final
The ID of this event, which is unique within its phase.

virtual Status status () const final
The current Status of this event.

SimpleEventState &update_status (Status new_status)
Update the status of this event.

virtual VersionedString::View name () const final
The “name” of this event. Ideally a short, simple piece of text that helps a human being intuit what this
event is expecting at a glance.

SimpleEventState &update_name (std::string new_name)
Update the name of this event.

virtual VersionedString::View detail () const final
A detailed explanation of this event.

SimpleEventState &update_detail (std::string new_detail)
Update the detail of this event.

virtual Log::View log () const final
A view of the log for this event.

24

Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Log &update_log ()
Update the log.

virtual std::vector<ConstStatePtr> dependencies () const final
Get more granular dependencies of this event, if any exist.

SimpleEventState &update_dependencies (std::vector<ConstStatePtr> new_dependencies)
Update the dependencies.

SimpleEventState &add_dependency (ConstStatePtr new_dependency)
Add one dependency to the state.

Public Static Functions

static std::shared_ptr<SimpleEventState> make (uint64_t id, std::string name, std::string detail, Status
initial_status, std::vector<ConstStatePtr> dependen-

cies = { }, std::function<rmf_traffic::Time)
> clock = nullptr

Class Header

* Defined in file_latest_rmf_task_include_rmf_task_Header.hpp

Class Documentation

class rmf_task::Header

Public Functions

Header (std::string category_, std::string detail_, rmf_traffic::Duration estimate_)
Constructor

Parameters
* [in] category_: Category of the subject
* [in] detail_: Details about the subject
* [in] estimate_: The original (ideal) estimate of how long the subject will last

const std::string &category () const
Category of the subject.

const std::string &detail () const
Details about the subject.

rmf_traffic::Duration original_duration_estimate () const
The original (ideal) estimate of how long the subject will last.

1.3. Full API 25

rmf_task, Release 1.0.0

Class Log

* Defined in file_latest_rmf_task_include_rmf_task_Log.hpp

Nested Relationships
Nested Types

* Class Log::Entry

* Class Log::Reader

* Class Reader::Iterable
* Class Iterable: :iterator

* Class Log::View

Class Documentation

class rmf_task::Log

Public Types

enum Tier
A computer-friendly ranking of how serious the log entry is.
Values:

enumerator Uninitialized
This is a sentinel value that should not generally be used.

enumerator Info
An expected occurrence took place.

enumerator Warning

An unexpected, problematic occurrence took place, but it can be recovered from. Human attention is

recommended but not necessary.

enumerator Error
A problem happened, and humans should be alerted.

Public Functions

Log (std::function<rmf_traffic::Time)
> clock = nullptrConstruct a log.

Parameters

* [in] clock: Specify a clock for this log to use.

std::chrono::system_clock::now() will be used.

void info (std::string text)
Add an informational entry to the log.

If nullptr is given, then

26

Chapter 1. rmf_task API

rmf_task, Release 1.0.0

void warn (std::string text)
Add a warning to the log.

void error (std::string text)
Add an error to the log.

void push (Tier tier, std::string text)
Push an entry of the specified severity.

void insert (Log::Entry entry)
Insert an arbitrary entry into the log.

View view () const
Get a View of the current state of this log. Any new entries that are added after calling this function will
not be visible to the View that is returned.

class Entry
A single entry within the log.

Public Functions

Tier tier () const
What was the tier of this entry.

uint32_t seq () const
Sequence number for this log entry. This increments once for each new log entry, until overflowing
and wrapping around to 0.

rmf_traffic::Time time () const
What was the timestamp of this entry.

const std::string &text () const
What was the text of this entry.

class Reader
A Reader that can iterate through the Views of Logs. The Reader will keep track of which Entries have
already been viewed, so every Entry read by a single Reader instance is unique.

Public Functions

Reader ()
Construct a Reader.

Iterable read (const View &view)
Create an object that can iterate through the entries of a View. Any entries that have been read by this
Reader in the past will be skipped. This can be used in a range-based for loop, e.g.:

for (const auto& entry : reader.read(view))

{
std::cout << entry.text () << std::endl;

}

class Iterable

1.3. Full API 27

rmf_task, Release 1.0.0

Public Types

using const_iterator =iterator

Public Functions

iterator begin () const
Get the beginning iterator of the read.

iterator end () const
Get the ending iterator of the read.

class iterator

Public Functions

const Entry &operator#* () const
Dereference operator.

const Entry *operator-> () const
Drill-down operator.

iterator &operator++ ()
Pre-increment operator: ++it

Note This is more efficient than the post-increment operator.

Warning It is undefined behavior to perform this operation on an iterator that is equal to
Log::Reader::Iterable::end().

Return a reference to the iterator itself

iterator operator++ (int)
Post-increment operator: it++

Warning It is undefined behavior to perform this operation on an iterator that is equal to
Log::Reader::Iterable::end().
Return a copy of the iterator before it was incremented.

bool operator== (const iterator &other) const
Equality comparison operator.

bool operator!= (const iterator &other) const
Inequality comparison operator.

class View
A snapshot view of the log’s contents. This is thread-safe to read even while new entries are being added
to the log, but those new entries will not be seen by this View. You must retrieve a new View to see new
entries.

28 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Class Log::Entry

* Defined in file_latest_rmf_task_include_rmf_task_Log.hpp

Nested Relationships

This class is a nested type of Class Log.

Class Documentation

class rmf_task::Log::Entry
A single entry within the log.

Public Functions
Tier tier () const
What was the tier of this entry.

uint32_t seq () const
Sequence number for this log entry. This increments once for each new log entry, until overflowing and
wrapping around to O.

rmf_traffic::Time time () const
What was the timestamp of this entry.

const std::string &text () const
What was the text of this entry.

Class Log::Reader
* Defined in file_latest_rmf_task_include_rmf_task_Log.hpp
Nested Relationships

This class is a nested type of Class Log.

Nested Types

e Class Reader::Iterable

e Class Iterable: :iterator

1.3. Full API 29

rmf_task, Release 1.0.0

Class Documentation

class rmf_task::Log::Reader
A Reader that can iterate through the Views of Logs. The Reader will keep track of which Entries have already
been viewed, so every Entry read by a single Reader instance is unique.

Public Functions

Reader ()
Construct a Reader.

Iterable read (const View &view)
Create an object that can iterate through the entries of a View. Any entries that have been read by this
Reader in the past will be skipped. This can be used in a range-based for loop, e.g.:

for (const auto& entry : reader.read(view))

{

std::cout << entry.text() << std::endl;

class Iterable

Public Types

using const_iterator = iferator

Public Functions
iterator begin () const
Get the beginning iterator of the read.

iterator end () const
Get the ending iterator of the read.

class iterator

Public Functions

const Entry &operator* () const
Dereference operator.

const Entry *operator-> () const
Drill-down operator.

iterator &operator++ ()
Pre-increment operator: ++it

Note This is more efficient than the post-increment operator.

Warning It is undefined behavior to perform this operation on an iterator that is equal to
Log::Reader::Iterable::end().

Return a reference to the iterator itself

30 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

iterator operator++ (int)
Post-increment operator: it++

Warning It is undefined behavior to perform this operation on an iterator that is equal to
Log::Reader::Iterable::end().
Return a copy of the iterator before it was incremented.

bool operator== (const iterator &other) const
Equality comparison operator.

bool operator!= (const iterator &other) const
Inequality comparison operator.

Class Reader::lterable
* Defined in file_latest_rmf_task_include_rmf_task_Log.hpp
Nested Relationships

This class is a nested type of Class Log::Reader.

Nested Types

e Class Iterable: :iterator

Class Documentation

class rmf_task::Log::Reader: :Iterable

Public Types

using const_iterator =iterator

Public Functions
iterator begin () const
Get the beginning iterator of the read.

iterator end () const
Get the ending iterator of the read.

class iterator

1.3. Full API 31

rmf_task, Release 1.0.0

Public Functions
const Entry &operatorx () const
Dereference operator.

const Entry *operator—-> () const
Drill-down operator.

iterator &operator++ ()
Pre-increment operator: ++it

Note This is more efficient than the post-increment operator.

Warning It is undefined behavior to perform this operation on an iterator that is equal to

Log::Reader::Iterable::end().
Return a reference to the iterator itself

iterator operator++ (int)
Post-increment operator: it++

Warning It is undefined behavior to perform this operation on an iterator that is equal to

Log::Reader::Iterable::end().
Return a copy of the iterator before it was incremented.

bool operator== (const iferator &other) const
Equality comparison operator.

bool operator!= (const iterator &other) const
Inequality comparison operator.

Class Iterable::iterator

* Defined in file_latest_rmf_task_include_rmf_task_Log.hpp

Nested Relationships

This class is a nested type of Class Reader::Iterable.

Class Documentation

class rmf_task::Log::Reader::Iterable::iterator

Public Functions
const Entry &operatorx* () const
Dereference operator.

const Entry *operator-> () const
Drill-down operator.

iterator &operator++ ()
Pre-increment operator: ++it

32

Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Note This is more efficient than the post-increment operator.

Warning It is undefined behavior to perform this operation on an iterator that is equal to
Log::Reader::Iterable::end().

Return a reference to the iterator itself

iterator operator++ (int)
Post-increment operator: it++

Warning It is undefined behavior to perform this operation on an iterator that is equal to
Log::Reader::Iterable::end().

Return a copy of the iterator before it was incremented.

bool operator== (const iterator &other) const
Equality comparison operator.

bool operator!= (const iterator &other) const
Inequality comparison operator.

Class Log::View
* Defined in file_latest_rmf_task_include_rmf_task_Log.hpp
Nested Relationships

This class is a nested type of Class Log.

Class Documentation

class View
A snapshot view of the log’s contents. This is thread-safe to read even while new entries are being added to the
log, but those new entries will not be seen by this View. You must retrieve a new View to see new entries.

Class Parameters
* Defined in file_latest_rmf_task_include_rmf_task_Parameters.hpp
Class Documentation

class rmf_task::Parameters
A class that containts parameters that are common among the agents/AGVs available for performing requests

1.3. Full API 33

rmf_task, Release 1.0.0

Public Functions

Parameters (std::shared_ptr<const rmf_traffic::agv::Planner> plan-
ner, rmf_battery::agv::BatterySystem battery_system,
rmf_battery::ConstMotionPowerSinkPtr motion_sink, rmf_battery::ConstDevicePowerSinkPtr

ambient_sink, rmf_battery::ConstDevicePowerSinkPtr fool_sink = nullptr)
Constructor

Parameters
* [in] battery_system: The battery system of the agent

* [in] motion_sink: The motion sink of the agent. This describes how power gets drained
while the agent is moving.

* [in] ambient_sink: The ambient device sink of the agent. This describes how power gets
drained at all times from passive use of the agent’s electronics.

* [in] planner: The planner for a agent in this fleet

* [in] tool_sink: An additional device sink of the agent. This describes how power gets
drained when a tool/device is active.

const std::shared_ptr<const rmf_traffic::agv::Planner> &planner () const
Get the planner.

Parameters &planner (std::shared_ptr<const rmf_traffic::agv::Planner> planner)
Set the planner.

const rmf battery::agv::BatterySystem &battery system() const
Get the battery system.

Parameters &battery_system (rmf_battery::agv::BatterySystem battery_system)
Set the battery_system.

const rmf_battery::ConstMotionPowerSinkPtr &motion_sink () const
Get the motion sink.

Parameters &motion_sink (rmf_battery::ConstMotionPowerSinkPtr motion_sink)
Set the motion_sink.

const rmf_battery::ConstDevicePowerSinkPtr &ambient_sink () const
Get the ambient device sink.

Parameters &ambient_sink (rmf_battery::ConstDevicePowerSinkPtr ambient_sink)
Set the ambient device sink.

const rmf_battery::ConstDevicePowerSinkPtr &tool_sink () const
Get the tool device sink.

Parameters &tool_sink (rmf_battery::ConstDevicePowerSinkPtr tool_sink)
Set the tool device sink.

34 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Class Payload

* Defined in file_latest_rmf_task_include_rmf_task_Payload.hpp

Nested Relationships
Nested Types

* Class Payload::Component

Class Documentation

class rmf_task::Payload

Public Functions
Payload (std::vector<Component> components)
Constructor.

const std::vector<Component> &components () const
Components in the payload.

std::string brief (const std::string &compartment_prefix ="in") const
A brief human-friendly description of the payload

Parameters
* [in] compartment_prefix: The prefix to use when describing the compartments

class Component

Public Functions
Component (std::string sku, uint32_t quantity, std::string compartment)
Constructor.

const std::string &sku () const
Stock Keeping Unit (SKU) for this component of the payload.

uint32_t quantity () const
The quantity of the specified item in this component of the payload.

const std::string &compartment () const
The name of the compartment.

1.3. Full API 35

rmf_task, Release 1.0.0

Class Payload::Component

* Defined in file_latest_rmf_task_include_rmf_task_Payload.hpp

Nested Relationships

This class is a nested type of Class Payload.

Class Documentation

class rmf_task::Payload: :Component

Public Functions
Component (std::string sku, uint32_t quantity, std::string compartment)
Constructor.

const std::string &sku () const
Stock Keeping Unit (SKU) for this component of the payload.

uint32_t quantity () const
The quantity of the specified item in this component of the payload.

const std::string &compartment () const
The name of the compartment.

Class Phase

* Defined in file_latest_rmf_task_include_rmf task Phase.hpp

Nested Relationships
Nested Types

* Class Phase::Active

* Class Phase::Completed
* Class Phase::Pending

* Class Phase::Snapshot

* Class Phase::Tag

36

Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Inheritance Relationships
Derived Type

e public rmf_task::phases: :RestoreBackup (Class RestoreBackup)

Class Documentation

class rmf_task: :Phase
Subclassed by rmf_task::phases::RestoreBackup

Public Types

using ConstTagPtr = std::shared_ptr<const Tug>

using ConstCompletedPtr = std::shared_ptr<const Completed>
using ConstActivePtr = std::shared_ptr<const Active>

using ConstSnapshotPtr = std::shared_ptr<const Snapshor>

class Active
Subclassed by rmf_task::Phase::Snapshot, rmf_task::phases::RestoreBackup::Active

Public Functions
virtual ConstTagPtr tag () const =0
Tag of the phase.

virtual Event::ConstStatePtr £inal_ewvent () const =0
The Event that needs to finish for this phase to be complete.

virtual rmf_traffic::Duration estimate_remaining_time () const =0
The estimated finish time for this phase.

virtual ~Active () = default

class Completed
Information about a phase that has been completed.

Public Functions
Completed (ConstSnapshotPtr snapshot_, rmf_traffic::Time start_, rmf_traffic::Time finish_)
Constructor.

const ConstSnapshotPtr &snapshot () const
The final log of the phase.

rmf_traffic:;:Time start_time () const
The actual time that the phase started.

rmf_traffic::Time finish_ time () const
The actual time that the phase finished.

class Pending

1.3. Full API 37

rmf_task, Release 1.0.0

Public Functions

Pending (ConstTagPtr tag)

Constructor.

const ConstTagPtr &tag () const
Tag of the phase.

Pending &will_be_skipped (bool value)
Change whether this pending phase will be skipped.

boolwill_be_skipped () const
Check if this phase is set to be skipped.

class Snapshot : public rmf_task::Phase::Active

Public Functions

virtual ConstlagPtr tag () const final
Tag of the phase.

virtual Event::ConstStatePtr £inal_event () const final
The Event that needs to finish for this phase to be complete.

virtual rmf_traffic::Duration estimate_remaining time () const final
The estimated finish time for this phase.

Public Static Functions

static ConstSnapshotPtr make (const Active &active)
Make a snapshot of an Active phase.

class Tag

Basic static information about a phase. This information should go unchanged from the Pending state,
through the Active state, and into the Completed state.

Public Types

using Id=uint64_t

Public Functions

Tag (Id id_, Header header_)

Constructor

Parameters
e [in]
* [in]

Id id () const

id_: ID of the phase. This phase ID must be unique within its 7ask instance.
header_: Header of the phase.

Unique ID of the phase.

const Header &header () const
Header of the phase, containing human-friendly high-level information about the phase.

38

Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Class Phase::Active
* Defined in file_latest_rmf_task_include_rmf_task_Phase.hpp
Nested Relationships

This class is a nested type of Class Phase.

Inheritance Relationships
Derived Types

e public rmf_task::Phase: :Snapshot (Class Phase::Snapshot)

e public rmf_task::phases::RestoreBackup: :Active (Class RestoreBackup::Active)

Class Documentation

class rmf_task::Phase::Active
Subclassed by rmf_task::Phase::Snapshot, rmf_task::phases::RestoreBackup::Active

Public Functions

virtual ConstTagPtr tag () const =0
Tag of the phase.

virtual Event::ConstStatePtr £inal_ewvent () const =0
The Event that needs to finish for this phase to be complete.

virtual rmf_traffic::Duration estimate_remaining time () const =0
The estimated finish time for this phase.

virtual ~Active () = default

Class Phase::Completed

* Defined in file_latest_rmf_task_include_rmf task Phase.hpp

Nested Relationships

This class is a nested type of Class Phase.

1.3. Full API 39

rmf_task, Release 1.0.0

Class Documentation

class rmf_task::Phase::Completed
Information about a phase that has been completed.

Public Functions
Completed (ConstSnapshotPtr snapshot_, rmf_traffic::Time start_, rmf_traffic::Time finish_)
Constructor.

const ConstSnapshotPtr &snapshot () const
The final log of the phase.

rmf_traffic::Time start_time () const
The actual time that the phase started.

rmf_traffic::Time £inish_time () const
The actual time that the phase finished.

Class Phase::Pending

* Defined in file_latest_rmf_task_include_rmf_task_Phase.hpp

Nested Relationships

This class is a nested type of Class Phase.

Class Documentation

class rmf_task::Phase::Pending

Public Functions
Pending (ConstTagPtr tag)
Constructor.

const ConstTugPtr &tag () const
Tag of the phase.

Pending &will_be_skipped (bool value)
Change whether this pending phase will be skipped.

boolwill_be_skipped () const
Check if this phase is set to be skipped.

40 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Class Phase::Snapshot

* Defined in file_latest_rmf_task_include_rmf_task_Phase.hpp

Nested Relationships

This class is a nested type of Class Phase.

Inheritance Relationships
Base Type

e public rmf_task::Phase: :Active (Class Phase::Active)

Class Documentation

class rmf_task::Phase: :Snapshot : public rmf_task::Phase::Active

Public Functions

virtual ConstTagPtr tag () const final
Tag of the phase.

virtual Event::ConstStatePtr £inal_event () const final
The Event that needs to finish for this phase to be complete.

virtual rmf_traffic::Duration estimate_remaining time () const final
The estimated finish time for this phase.

Public Static Functions

static ConstSnapshotPtr make (const Active &active)
Make a snapshot of an Active phase.

Class Phase::Tag

* Defined in file_latest_rmf_task_include_rmf_task_Phase.hpp

Nested Relationships

This class is a nested type of Class Phase.

1.3. Full API 41

rmf_task, Release 1.0.0

Class Documentation

class rmf_task::Phase::Tag
Basic static information about a phase. This information should go unchanged from the Pending state, through
the Active state, and into the Completed state.

Public Types

using Id=uint64_t

Public Functions

Tag (Id id_, Header header_)
Constructor

Parameters
* [in] id_: ID of the phase. This phase ID must be unique within its 7ask instance.
* [in] header_: Header of the phase.

Id id () const
Unique ID of the phase.

const Header &header () const
Header of the phase, containing human-friendly high-level information about the phase.

Class RestoreBackup

* Defined in file_latest_rmf task_include_rmf task phases_RestoreBackup.hpp
Nested Relationships
Nested Types

* Class RestoreBackup::Active

Inheritance Relationships

Base Type

e public rmf_task::Phase (Class Phase)

42 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Class Documentation

class rmf_task::phases: :RestoreBackup : public rmf_task::Phase

Public Types

using ActivePtr = std::shared_ptr<Active>

class Active: public rmf_task::Phase::Active
This is a special phase type designated for restoring the backup of a task.

This phase type uses a reserved phase ID of 0.

Public Functions
virtual ConstTagPtr tag () const final
Tag of the phase.

virtual Event::ConstStatePtr £inal_event () const final
The Event that needs to finish for this phase to be complete.

virtual rmf_traffic::Duration estimate_remaining time () const final
The estimated finish time for this phase.

void parsing failed (const std::string &error_message)
Call this function if the parsing fails.

void restoration_failed (const std::string &error_message)
Call this function if the restoration fails for some reason besides parsing

void restoration_succeeded ()
Call this function if the parsing succeeds.

Log &update_log ()
Get the log to pass in some other kind of message.

Public Static Functions

static ActivePtr make (const std:string &backup_state_str, rmf_traffic::Duration esti-

mated_remaining_time)
Make an active RestoreBackup phase.

Class RestoreBackup::Active

* Defined in file_latest_rmf_task_include_rmf_task_phases_RestoreBackup.hpp

1.3. Full API 43

rmf_task, Release 1.0.0

Nested Relationships

This class is a nested type of Class RestoreBackup.

Inheritance Relationships
Base Type

e public rmf_task::Phase: :Active (Class Phase::Active)

Class Documentation

class rmf_task::phases::RestoreBackup: :Active : public rmf task::Phase::Active
This is a special phase type designated for restoring the backup of a task.

This phase type uses a reserved phase ID of 0.

Public Functions
virtual ConstTagPtr tag () const final
Tag of the phase.

virtual Event::ConstStatePtr £inal_event () const final
The Event that needs to finish for this phase to be complete.

virtual rmf_traffic::Duration estimate_remaining time () const final
The estimated finish time for this phase.

void parsing_failed (const std::string &error_message)
Call this function if the parsing fails.

void restoration_failed (const std::string &error_message)
Call this function if the restoration fails for some reason besides parsing

void restoration_succeeded ()
Call this function if the parsing succeeds.

Log &update_log ()
Get the log to pass in some other kind of message.

Public Static Functions

static ActivePtr make (const std:string &backup_state_str, rmf_traffic::Duration esti-

mated_remaining_time)
Make an active RestoreBackup phase.

44 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Class Request

* Defined in file_latest_rmf_task_include_rmf_task_Request.hpp

Class Documentation

class rmf_task::Request

Public Functions

Request (const std:string &id, rmf_traffic::Time earliest_start_time, ConstPriorityPtr priority,

Task::ConstDescriptionPtr description, bool automatic = false)
Constructor

Parameters
* [in] earliest_start_time: The desired start time for this request

* [in] priority: The priority for this request. This is provided by the Priority Scheme. For
requests that do not have any priority this is a nullptr.

* [in] description: The description for this request
* [in] automatic: True if this request is auto-generated

Request (Task::ConstBooking Ptr booking, Task::ConstDescriptionPtr description)
Constructor

Parameters
* [in] booking: Booking information for this request
* [in] description: Description for this request

const Task::ConstBookingPtr &booking () const
Get the tag of this request.

const Task::ConstDescriptionPtr &description () const
Get the description of this request.

Class RequestFactory

* Defined in file_latest_rmf_task_include_rmf_task_RequestFactory.hpp

1.3. Full API 45

rmf_task, Release 1.0.0

Inheritance Relationships
Derived Types

e public rmf_task::requests::ChargeBatteryFactory (Class ChargeBatteryFactory)

e public rmf_task::requests::ParkRobotFactory (Class ParkRobotFactory)

Class Documentation

class rmf_task::RequestFactory
An abstract interface for generating a tailored request for an AGV given.

Subclassed by rmf_task::requests::ChargeBatteryFactory, rmf_task::requests::ParkRobotFactory
Public Functions
virtual ConstRequestPtr make_request (const Srtate &state) const =0

Generate a request for the AGV given the state that the robot will have when it is ready to perform the
request

virtual ~RequestFactory () = default

Class ChargeBattery

* Defined in file_latest_rmf_task_include_rmf_task_requests_ChargeBattery.hpp

Nested Relationships

Nested Types

* Class ChargeBattery::Description

Class Documentation

class rmf_task::requests::ChargeBattery
A class that generates a Request which requires an AGV to return to its desginated charging_waypoint as speci-
fied in its agv::State and wait till its battery charges up to the recharge_soc confugred in agv::Constraints

Public Static Functions

static ConstRequestPtr make (rmf_traffic::Time earliest_start_time, ConstPriorityPtr priority =

nullptr, bool automatic = true)
Generate a chargebattery request

Parameters
* [in] earliest_start_time: The desired start time for this request

* [in] priority: The priority for this request

46 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

* [in] automatic: True if this request is auto-generated
class Description: public rmf_task::7ask::Description
Public Functions

virtual Task::ConstModelPtr make_model (rmf_traffic::Time earliest_start_time, const Pa-

rameters ¶meters) const final
Generate a Model for the task based on the unique traits of this description

Parameters
* [in] earliest_start_time: The earliest time this task should begin execution. This
is usually the requested start time for the task.
* [in] parameters: The parameters that describe this AGV

virtual Info generate_info (const Srate &initial_state, const Parameters ¶meters)

. . .const final . L .
Generate a plain text info description for the task, given the predicted initial state and the task planning

parameters.

Parameters
* [in] initial_state: The predicted initial state for the task
* [in] parameters: The task planning parameters

Public Static Functions

static Task::ConstDescriptionPtr make ()
Generate the description for this request.

Class ChargeBattery::Description

* Defined in file_latest_rmf_task_include_rmf task_requests_ChargeBattery.hpp

Nested Relationships

This class is a nested type of Class ChargeBattery.

Inheritance Relationships
Base Type

e public rmf_task::Task: :Description (Class Task::Description)

1.3. Full API 47

rmf_task, Release 1.0.0

Class Documentation

class rmf_task::requests::ChargeBattery: :Description : public rmf_task::7Task::Description

Public Functions

virtual Task::ConstModelPtr make_model (rmf_traffic::Time earliest_start_time, const Parame-

ters ¶meters) const final
Generate a Model for the task based on the unique traits of this description

Parameters

* [in] earliest_start_time: The earliest time this task should begin execution. This is
usually the requested start time for the task.

* [in] parameters: The parameters that describe this AGV

virtual Info generate_info (const State &initial_state, const Parameters ¶meters)

. . const final . . L .
Generate a plain text info description for the task, given the predicted initial state and the task planning

parameters.

Parameters
* [in] initial_state: The predicted initial state for the task

* [in] parameters: The task planning parameters

Public Static Functions

static Task::ConstDescriptionPtr make ()
Generate the description for this request.

Class ChargeBatteryFactory

* Defined in file_latest_rmf_task_include_rmf_task_requests_ChargeBatteryFactory.hpp
Inheritance Relationships
Base Type

e public rmf_task::RequestFactory (Class RequestFactory)

48 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Class Documentation

class rmf_task::requests: :ChargeBatteryFactory : public rmf_task::RequestFactory
The ChargeBatteryFactory will generate a ChargeBattery request which requires an AGV to return to its des-
ginated charging_waypoint as specified in its agv::State and wait till its battery charges up to the recharge_soc
confugred in agv::Constraints recharge_soc specified in its agv::Constraints

Public Functions

ChargeBatteryFactory ()

virtual ConstRequestPtr make_request (const State &state) const final
Documentation inherited.

Class Clean

* Defined in file_latest_rmf_task_include_rmf_task_requests_Clean.hpp

Nested Relationships
Nested Types

* Class Clean::Description

Class Documentation

class rmf_task::requests::Clean
A class that generates a Request which requires an AGV to perform a cleaning operation at a location

Public Static Functions

static ConstRequestPtr make (std::size_t start_waypoint, std:size_t end_waypoint, const
rmf_traffic:: Trajectory &cleaning_path, const std:string &id,
rmf_traffic::Time earliest_start_time, ConstPriorityPtr priority =

nullptr, bool automatic = false)
Generate a clean request

Parameters

* [in] start_waypoint: The graph index for the location where the AGV should begin its
cleaning operation

* [in] end_waypoint: The graph index for the location where the AGV ends up after its
cleaning operation

* [in] cleaning_path: A trajectory that describes the motion of the AGV during the cleaning
operation. This is used to determine the process duration and expected battery drain

* [in] id: A unique id for this request

* [in] earliest_start_time: The desired start time for this request

1.3. Full API 49

rmf_task, Release 1.0.0

* [in] priority: The priority for this request
* [in] automatic: True if this request is auto-generated

class Description: public rmf_task::7ask::Description

Public Functions

virtual Task::ConstModelPtr make_model (rmf_traffic::Time earliest_start_time, const Pa-

rameters ¶meters) const final
Generate a Model for the task based on the unique traits of this description

Parameters
* [in] earliest_start_time: The earliest time this task should begin execution. This
is usually the requested start time for the task.
* [in] parameters: The parameters that describe this AGV

virtual Info generate_info (const Srate &initial_state, const Parameters ¶meters)

. . . const final | . L .
Generate a plain text info description for the task, given the predicted initial state and the task planning

parameters.

Parameters
* [in] initial_state: The predicted initial state for the task
* [in] parameters: The task planning parameters

std::size_t start_waypoint () const
Get the start waypoint in this request.

std::size_t end_waypoint () const
Get the end waypoint in this request.

Public Static Functions

static std::shared_ptr<Description> make (std::size_t start_waypoint, std::size_t end_waypoint,
const rmf_traffic::Trajectory &cleaning_path)
Generate the description for this request.

Class Clean::Description

* Defined in file_latest_rmf_task_include_rmf_task_requests_Clean.hpp

Nested Relationships

This class is a nested type of Class Clean.

50 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Inheritance Relationships
Base Type

e public rmf_task::Task: :Description (Class Task::Description)

Class Documentation

class rmf_task::requests::Clean::Description: public rmf task::7ask::Description

Public Functions

virtual Task::ConstModelPtr make_model (rmf_traffic::Time earliest_start_time, const Parame-

ters ¶meters) const final
Generate a Model for the task based on the unique traits of this description

Parameters

* [in] earliest_start_time: The earliest time this task should begin execution. This is
usually the requested start time for the task.

* [in] parameters: The parameters that describe this AGV

virtual Info generate_info (const State &initial_state, const Parameters ¶meters)

. . const final
Generate a plain text info description for the task, given the predicted initial state and the task planning

parameters.

Parameters
* [in] initial_state: The predicted initial state for the task
* [in] parameters: The task planning parameters

std::size_t start_waypoint () const
Get the start waypoint in this request.

std::size_t end_waypoint () const
Get the end waypoint in this request.

Public Static Functions

static std::shared_ptr<Description> make (std::size_t start_waypoint, std::size_t end_waypoint,

const rmf_traffic::Trajectory &cleaning_path)
Generate the description for this request.

1.3. Full API 51

rmf_task, Release 1.0.0

Class Delivery

* Defined in file_latest_rmf_task_include_rmf_task_requests_Delivery.hpp

Nested Relationships
Nested Types

* Class Delivery::Description

Class Documentation

class rmf_task::requests::Delivery

A class that generates a Request which requires an AGV to pickup items from one location and deliver them to

another

Public Static Functions

static ConstRequestPtr make (std::size_t pickup_waypoint, rmf_traffic::Duration pickup_wait,

Generate a delivery request

Parameters

std::size_t dropoff_waypoint, rmf_traffic::Duration dropoff_wait,
Payload payload, const std:string &id, rmf_traffic::Time ear-
liest_start_time, ConstPriorityPtr priority = nullptr, bool auto-
matic = false, std:string pickup_from_dispenser = "", std::string
dropoff_to_ingestor ="")

* [in] pickup_waypoint: The graph index for the pickup location

* [in] pickup_wait: The expected duration the AGV has to wait at the pickup location for

the items to be loaded

* [in] dropoff_waypoint: The graph index for the dropoff location

* [in] dropoff_wait: The expected duration the AGV has to wait at the dropoff location for

the items to be unloaded

* [in] id: A unique id for this request

* [in] earliest_start_time: The desired start time for this request

* [in] priority: The priority for this request

* [in] automatic: True if this request is auto-generated

class Description: public rmf_task::7ask::Description

52

Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Public Types

using Start =rmf traffic::agv::Planner::Start

Public Functions

virtual Tuask::ConstModelPtr make_model (rmf_traffic::Time earliest_start_time, const Pa-
rameters ¶meters) const final
Generate a Model for the task based on the unique traits of this description

Parameters
* [in] earliest_start_time: The earliest time this task should begin execution. This
is usually the requested start time for the task.
* [in] parameters: The parameters that describe this AGV

virtual Info generate_info (const Srate &initial_state, const Parameters ¶meters)

. . .const final e .
Generate a plain text info description for the task, given the predicted initial state and the task planning

parameters.

Parameters
* [in] initial_state: The predicted initial state for the task
* [in] parameters: The task planning parameters

std::size_t pickup_waypoint () const
Get the pickup waypoint in this request.

std::string pickup_from_dispenser () const
Get the name of the dispenser that we’re picking up from.

rmf_traffic::Duration pickup_wait () const
Get the duration over which delivery items are loaded.

std::size_t dropoff waypoint () const
Get the dropoff waypoint in this request.

std::string dropoff_to_ingestor () const
Get the name of the ingestor that we’re dropping off to.

rmf_traffic::Duration dropoff_wait () const
Get the duration over which delivery items are unloaded.

const Payload &payload () const
Get the payload that is being delivered.

Public Static Functions

static Task::ConstDescriptionPtr make (std::size_t pickup_waypoint, rmf_traffic::Duration
pickup_duration, std::size_t dropoff_waypoint,
rmf_traffic::Duration dropoff_duration, Payload pay-
load, std::string pickup_from_dispenser = "", std::string
dropoff_to_ingestor ="")
Generate the description for this request.

1.3. Full API 53

rmf_task, Release 1.0.0

Class Delivery::Description

* Defined in file_latest_rmf_task_include_rmf_task_requests_Delivery.hpp

Nested Relationships

This class is a nested type of Class Delivery.

Inheritance Relationships
Base Type

e public rmf_task::Task: :Description (Class Task::Description)

Class Documentation

class rmf_task::requests::Delivery: :Description : public rmf_task::7ask::Description

Public Types

using Start =rmf_traffic::agv::Planner::Start

Public Functions

virtual Task::ConstModelPtr make_model (rmf_traffic::Time earliest_start_time, const Parame-

ters ¶meters) const final
Generate a Model for the task based on the unique traits of this description

Parameters

* [in] earliest_start_time: The earliest time this task should begin execution. This is
usually the requested start time for the task.

* [in] parameters: The parameters that describe this AGV

virtual Info generate_info (const Srtate &initial_state, const Parameters ¶meters)

. . const final . . L .
Generate a plain text info description for the task, given the predicted initial state and the task planning

parameters.

Parameters
* [in] initial_state: The predicted initial state for the task
* [in] parameters: The task planning parameters

std::size_t pickup_waypoint () const
Get the pickup waypoint in this request.

std::string pickup_from_dispenser () const
Get the name of the dispenser that we’re picking up from.

54 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

rmf_traffic::Duration pickup_wait () const
Get the duration over which delivery items are loaded.

std::size_t dropoff_waypoint () const
Get the dropoff waypoint in this request.

std::string dropoff_to_ingestor () const
Get the name of the ingestor that we’re dropping off to.

rmf_traffic::Duration dropoff_wait () const
Get the duration over which delivery items are unloaded.

const Payload &payload () const
Get the payload that is being delivered.

Public Static Functions

static Task::ConstDescriptionPtr make (std::size_t pickup_waypoint, rmf_traffic::Duration
pickup_duration, std::size_t dropoff_waypoint,
rmf_traffic::Duration dropoff_duration, Payload pay-
load, std::string pickup_from_dispenser = "", std::string

dropoff_to_ingestor ="")
Generate the description for this request.

Class Loop

* Defined in file_latest_rmf_task_include_rmf task_ requests_Loop.hpp

Nested Relationships
Nested Types

* Class Loop::Description

Class Documentation

class rmf_task::requests: :Loop
A class that generates a Request which requires an AGV to repeatedly travel between two locations

Public Static Functions

static ConstRequestPtr make (std::size_t start_waypoint, std::size_t finish_waypoint, std::size_t
num_loops, const std:string &id, rmf_traffic::Time earli-
est_start_time, ConstPriorityPtr priority = nullptr, bool automatic =

false)
Generate a loop request

Parameters
* [in] start_waypoint: The graph index for the starting waypoint of the loop

* [in] finish_waypoint: The graph index for the finishing waypoint of the loop

1.3. Full API 55

rmf_task, Release 1.0.0

* [in] num_loops: The number of times the AGV should loop between the start_waypoint and
finish_waypoint

* [in] id: A unique id for this request

* [in] earliest_start_time: The desired start time for this request
* [in] priority: The priority for this request

* [in] automatic: True if this request is auto-generated

class Description: public rmf_task::7ask::Description

Public Functions

virtual Task::ConstModelPtr make_model (rmf_traffic::Time earliest_start_time, const Pa-

rameters ¶meters) const final
Generate a Model for the task based on the unique traits of this description

Parameters
* [in] earliest_start_time: The earliest time this task should begin execution. This
is usually the requested start time for the task.
* [in] parameters: The parameters that describe this AGV

virtual Info generate_info (const Srate &initial_state, const Parameters ¶meters)

. . . const final | . L .
Generate a plain text info description for the task, given the predicted initial state and the task planning

parameters.

Parameters
* [in] initial_state: The predicted initial state for the task
* [in] parameters: The task planning parameters

std::size_t start_waypoint () const
Get the start waypoint of the loop in this request.

std::size_t £inish_waypoint () const
Get the finish waypoint of the loop in this request.

std::size_t num_loops () const
Get the numbert of loops in this request.

Public Static Functions

static Task::ConstDescriptionPtr make (std::size_t start_waypoint, std::size_t finish_waypoint,

std::size_t num_loops)
Generate the description for this request.

56 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Class Loop::Description

* Defined in file_latest_rmf_task_include_rmf_task_requests_L.oop.hpp

Nested Relationships

This class is a nested type of Class Loop.

Inheritance Relationships
Base Type

e public rmf_task::Task: :Description (Class Task::Description)

Class Documentation

class rmf_task::requests::Loop: :Description : public rmf_task::7ask::Description

Public Functions

virtual Tusk::ConstModelPtr make_model (rmf_traffic::Time earliest_start_time, const Parame-

ters ¶meters) const f£inal
Generate a Model for the task based on the unique traits of this description

Parameters

* [in] earliest_start_time: The earliest time this task should begin execution. This is
usually the requested start time for the task.

* [in] parameters: The parameters that describe this AGV

virtual Info generate_info (const Srate &initial_state, const Parameters ¶meters)

. . const final
Generate a plain text info description for the task, given the predicted initial state and the task planning

parameters.

Parameters
* [in] initial_state: The predicted initial state for the task
* [in] parameters: The task planning parameters

std::size_t start_waypoint () const
Get the start waypoint of the loop in this request.

std::size_t £inish_waypoint () const
Get the finish waypoint of the loop in this request.

std::size_t num_loops () const
Get the numbert of loops in this request.

1.3. Full API 57

rmf_task, Release 1.0.0

Public Static Functions

static Task::ConstDescriptionPtr make (std::size_t start_waypoint, std::size_t finish_waypoint,
std::size_t num_loops)
Generate the description for this request.

Class ParkRobotFactory

* Defined in file_latest_rmf_task_include_rmf_task_requests_ParkRobotFactory.hpp

Inheritance Relationships
Base Type

e public rmf_task::RequestFactory (Class RequestFactory)

Class Documentation

class rmf_task::requests: :ParkRobotFactory : public rmf_task::RequestFactory
The ParkRobotFactory will generate a request for the AGV to return to its desginated parking spot and remain
idle there. This factory may be used when AGVs should not remain idle at the location of their last task but
rather wait for new orders at their designated parking spots.

Public Functions

ParkRobotFactory (std::optional<std::size_t> parking_waypoint = std::nullopt)
Constructor

Parameters

* [in] parking_waypoint: The graph index of the waypoint assigned to this AGV for park-
ing. If nullopt, the AGV will return to its charging_waypoint and remain idle there. It will not
wait for its battery to charge up before undertaking new tasks.

virtual ConstRequestPtr make_request (const State &state) const final
Documentation inherited.

Class State

* Defined in file_latest_rmf_task_include_rmf_task_State.hpp

58 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Inheritance Relationships
Base Type

e public rmf_task::CompositeData (Class CompositeData)

Class Documentation

class rmf_task::State: publicrmf task::CompositeData

Public Functions

RMF_TASK_DEFINE_COMPONENT (std::size_t, CurrentWaypoint)
The current waypoint of the robot state.

std::optional<std::size_t> waypoint () const

State &waypoint (std::size_t new_waypoint)

RMF_TASK DEFINE_COMPONENT (double, CurrentOrientation)
The current orientation of the robot state.

std::optional<double> orientation () const
State &orientation (double new_orientation)

RMF TASK_DEFINE COMPONENT (rmf_traffic::Time, CurrentTime)
The current time for the robot.

std::optional<rmf_traffic::Time> time () const
State &time (rmf_traffic::Time new_time)

RMF_TASK_DEFINE_COMPONENT (std::size_t, DedicatedChargingPoint)
The dedicated charging point for this robot.

std::optional<std::size_t> dedicated_charging waypoint () const
State &dedicated_charging_waypoint (std::size_t new_charging_waypoint)

RMF_TASK_DEFINE_COMPONENT (double, CurrentBatterySoC)
The current battery state of charge of the robot. This value is between 0.0 and 1.0.

std::optional<double> battery_soc () const
State &battery_soc (double new_battery_soc)

State &load_basic (const rmf_traffic::agv::Plan::Start &location, std::size_t charging_point, double

battery_soc)
Load the basic state components expected for the planner.

Parameters
e [in] location: The robot’s initial location data.
* [in] charging_point: The robot’s dedicated charging point.

* [in] battery_soc: The robot’s initial battery state of charge.

1.3. Full API 59

rmf_task, Release 1.0.0

State &load (const rmf_traffic::agv::Plan::Start &location)
Load the plan start into the Stare. The location info will be split into CurrentWaypoint, CurrentOrientation,
and CurrentTime data.

std::optional<rmf_traffic::agv::Plan::Start> project_plan_start (double default_orientation = 0.0,
rmf_traffic::Time default_time =

rmf_traffic::Time()) const
Project an rmf _traffic::agv::Plan::Start from this Srate.

If CurrentWaypoint is unavailable, this will return a std::nullopt. For any other components that are un-
available (CurrentOrientation or CurrentTime), the given default values will be used.

Parameters

e [in] default_orientation: The orientation value that will be used if CurrentOrientation
is not available in this State.

e [in] default_time: The time value that will be used if default_time is not available in this
State.

std::optional<rmf_traffic::agv::Plan::Start> extract_plan_start () const
Extract an rmf_traffic::agv::Plan::Start from this Stare.

If any necessary component is missing (i.e. CurrentWaypoint, CurrentOrientation, or CurrentTime) then
this will return a std::nullopt.

Class Task

* Defined in file_latest_rmf_task_include_rmf_task_Task.hpp

Nested Relationships
Nested Types

* Class Task::Active

* Class Task::Booking

* Class Task::Description
e Struct Description::Info
* Class Task::Model

e Class Task::Tag

Class Documentation

class rmf_task::Task
Pure abstract interface for an executable 7usk.

60 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Public Types

using ConstBookingPtr = std::shared_ptr<const Booking>

using ConstTagPtr = std::shared_ptr<const Tug>

using ConstModelPtr = std::shared_ptr<const Model>

using ConstDescriptionPtr = std::shared_ptr<const Description>
using ActivePtr = std::shared_ptr<Active>

class Active

Public Types

using Backup = detail::Backup
Backup data for the task. The state of the task is represented by a string. The meaning and format of
the string is up to the 7ask implementation to decide.

Each Backup is tagged with a sequence number. As the 7ask makes progress, it can issue new Backups
with higher sequence numbers. Only the Backup with the highest sequence number will be kept.

using Resume = detail::Resume
The Resume class keeps track of when the 7ask is allowed to Resume. You can either call the Resume
object’s operator() or let the object expire to tell the 7ask that it may resume.

Public Functions

virtual Event::Status status_overview () const =0
Get a quick overview status of how the task is going.

virtual bool £finished () const =0
Check if this task is finished, which could include successful completion or cancellation.

virtual const std::vector<Phase::ConstCompletedPtr> &completed_phases () const =

0
Descriptions of the phases that have been completed.

virtual Phase::ConstActivePtr active_phase () const =0
Interface for the phase that is currently active.

virtual std::optional<rmf_traffic::Time> active_phase_start_time () const =0
Time that the current active phase started.

virtual const std::vector<Phase::Pending> &pending_phases () const =0
Descriptions of the phases that are expected in the future.

virtual const ConstTagPtr &tag () const =0
The tag of this Task.

virtual rmf_traffic::Duration estimate_remaining_ time () const =0
Estimate the overall finishing time of the task.

virtual Backup backup () const =0
Get a backup for this 7ask.

virtual Resume interrupt (std::function<void)
> task_is_interrupted = OTell this Task that it needs to be interrupted. An interruption means the robot
may be commanded to do other tasks before this task resumes.

1.3. Full API 61

rmf_task, Release 1.0.0

Interruptions may occur to allow operators to take manual control of the robot, or to engage automatic
behaviors in response to emergencies, e.g. fire alarms or code blues.

Return an object to inform the 7ask when it is allowed to resume.
Parameters
* [in] task_is_interrupted: This callback will be triggered when the 7ask has reached
a state where it is okay to start issuing other commands to the robot.

virtual void cancel () =0

Tell the Task that it has been canceled. The behavior that follows a cancellation will vary between
different Tasks, but generally it means that the robot should no longer try to complete its 7usk and
should instead try to return itself to an unencumbered state as quickly as possible.

The Task may continue to perform some phases after being canceled. The pending_phases are likely
to change after the 7ask is canceled, being replaced with phases that will help to relieve the robot so
it can return to an unencumbered state.

The Task should continue to be tracked as normal. When its finished callback is triggered, the cancel-
lation is complete.

virtual voidkill () =0

Kill this 7ask. The behavior that follows a kill will vary between different Tasks, but generally it
means that the robot should be returned to a safe idle state as soon as possible, even if it remains
encumbered by something related to this 7ask.

The Task should continue to be tracked as normal. When its finished callback is triggered, the killing
is complete.

The kill() command supersedes the cancel() command. Calling cancel() after calling kill() will have
no effect.

virtual void skip (uintb4_t phase_id, bool value = true) =0

Skip a specific phase within the task. This can be issued by operators if manual intervention is needed
to unblock a task.

If a pending phase is specified, that phase will be skipped when the 7usk reaches it.

Parameters
* [in] phase_id: The ID of the phase that should be skipped.
* [in] wvalue: True if the phase should be skipped, false otherwise.

virtual void rewind (uint64_t phase_id) =0

Rewind the Task to a specific phase. This can be issued by operators if a phase did not actually go as
intended and needs to be repeated.

It is possible that the Task will rewind further back than the specified phase_id if the specified phase
depends on an earlier one. This is up to the discretion of the 7ask implementation.

virtual ~Active () = default

62

Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Protected Static Functions

static Resume make_resumer (std::function<void)
> callbackUsed by classes that inherit the 7ask interface to create a Resumer object

Parameters
* [in] callback: Provide the callback that should be triggered when the 7ask is allowed to
resume

class Booking
Basic information about how the task was booked, e.g. what its name is, when it should start, and what its
priority is.

Public Functions

Booking (std::string id_, rmf_traffic::Time earliest_start_time_, ConstPriorityPtr priority_, bool

automatic_ = false)
Constructor

Parameters
* [in] id_: The identity of the booking
] earliest_start_time_: The earliest time that the task may begin
] priority_: The priority of the booking
] automatic_: Whether this booking was automatically generated

const std::string &id () const
The unique id for this booking.

rmf_traffic::Time earliest_start_time () const
Get the earliest time that this booking may begin.

ConstPriorityPtr priority () const
Get the priority of this booking.

bool automatic () const

class Description
An abstract interface to define the specifics of this task. This implemented description will differentiate
this task from others.

Subclassed by rmf_task::requests::ChargeBattery::Description, rmf_task::requests::Clean::Description,
rmf_task::requests::Delivery::Description, rmf_task::requests::Loop::Description

Public Functions

virtual ConstModelPtr make _model (rmf _traffic::Time earliest_start time, const Parameters

¶meters) const =0
Generate a Model for the task based on the unique traits of this description

Parameters
* [in] earliest_start_time: The earliest time this task should begin execution. This
is usually the requested start time for the task.
* [in] parameters: The parameters that describe this AGV

1.3.

Full API 63

rmf_task, Release 1.0.0

virtual /nfo generate_info (const State &initial_state, const Parameters ¶meters)

const =0
Generate a plain text info description for the task, given the predicted initial state and the task planning
parameters.
Parameters

* [in] initial_state: The predicted initial state for the task
* [in] parameters: The task planning parameters

virtual ~Description () = default

struct Info

Public Members

std::string category
std::string detail

class Model
An abstract interface for computing the estimate and invariant durations of this request

Public Functions

virtual std::optional<Estimate> estimate_f£finish (const Srate &initial_state, const
Constraints &task_planning_constraints,
const TravelEstimator

&travel_estimator) const =0
Estimate the state of the robot when the task is finished along with the time the robot has to wait

before commencing the task

virtual rmf_traffic::Duration invariant_duration () const =0
Estimate the invariant component of the task’s duration.

virtual ~Model () = default

class Tag
Basic static information about the task.

Public Functions
Tag (ConstBooking Ptr booking_, Header header)
Constructor.

const ConstBookingPtr &booking () const
The booking information of the request that this 7ask is carrying out.

const Header &header () const
The header for this Tusk.

64 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Class Task::Active

* Defined in file_latest_rmf_task_include_rmf_task_Task.hpp

Nested Relationships

This class is a nested type of Class Task.

Class Documentation

class rmf_task::Task::Active

Public Types

using Backup = detail::Backup
Backup data for the task. The state of the task is represented by a string. The meaning and format of the
string is up to the 7ask implementation to decide.

Each Backup is tagged with a sequence number. As the 7ask makes progress, it can issue new Backups
with higher sequence numbers. Only the Backup with the highest sequence number will be kept.

using Resume = detail::Resume
The Resume class keeps track of when the 7ask is allowed to Resume. You can either call the Resume
object’s operator() or let the object expire to tell the 7ask that it may resume.

Public Functions
virtual Event::Status status_overview () const =0
Get a quick overview status of how the task is going.

virtual bool £finished () const =0
Check if this task is finished, which could include successful completion or cancellation.

virtual const std::vector<Phase::ConstCompletedPtr> &completed_phases () const =0
Descriptions of the phases that have been completed.

virtual Phase::ConstActivePtr active_phase () const =0
Interface for the phase that is currently active.

virtual std::optional<rmf_traffic::Time> active_phase_start_time () const =0
Time that the current active phase started.

virtual const std::vector<Phase::Pending> &pending_phases () const =0
Descriptions of the phases that are expected in the future.

virtual const ConstTagPtr &tag () const =0
The tag of this Task.

virtual rmf_traffic::Duration estimate_remaining time () const =0
Estimate the overall finishing time of the task.

virtual Backup backup () const =0
Get a backup for this Tusk.

1.3.

Full API 65

rmf_task, Release 1.0.0

virtual Resume interrupt (std::function<void)

> task_is_interrupted = OTell this Task that it needs to be interrupted. An interruption means the robot may
be commanded to do other tasks before this task resumes.

Interruptions may occur to allow operators to take manual control of the robot, or to engage automatic
behaviors in response to emergencies, e.g. fire alarms or code blues.

Return an object to inform the 7ask when it is allowed to resume.
Parameters

* [in] task_is_interrupted: This callback will be triggered when the 7usk has reached a
state where it is okay to start issuing other commands to the robot.

virtual void cancel () =0

Tell the Task that it has been canceled. The behavior that follows a cancellation will vary between different
Tasks, but generally it means that the robot should no longer try to complete its 7ask and should instead
try to return itself to an unencumbered state as quickly as possible.

The Task may continue to perform some phases after being canceled. The pending_phases are likely to
change after the 7ask is canceled, being replaced with phases that will help to relieve the robot so it can
return to an unencumbered state.

The Task should continue to be tracked as normal. When its finished callback is triggered, the cancellation
is complete.

virtual voidkill () =0

Kill this 7ask. The behavior that follows a kill will vary between different Tasks, but generally it means
that the robot should be returned to a safe idle state as soon as possible, even if it remains encumbered by
something related to this 7ask.

The Task should continue to be tracked as normal. When its finished callback is triggered, the killing is
complete.

The kill() command supersedes the cancel() command. Calling cancel() after calling kill() will have no
effect.

virtual void skip (uint64_t phase_id, bool value = true) =0

Skip a specific phase within the task. This can be issued by operators if manual intervention is needed to
unblock a task.

If a pending phase is specified, that phase will be skipped when the 7ask reaches it.

Parameters
* [in] phase_id: The ID of the phase that should be skipped.

* [in] wvalue: True if the phase should be skipped, false otherwise.

virtual void rewind (uint64_t phase_id) =0

Rewind the 7ask to a specific phase. This can be issued by operators if a phase did not actually go as
intended and needs to be repeated.

It is possible that the 7usk will rewind further back than the specified phase_id if the specified phase
depends on an earlier one. This is up to the discretion of the 7ask implementation.

virtual ~Active () = default

66

Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Protected Static Functions

static Resume make_resumer (std::function<void)
> callbackUsed by classes that inherit the Tusk interface to create a Resumer object

Parameters

* [in] callback: Provide the callback that should be triggered when the 7ask is allowed to
resume

Class Task::Booking

* Defined in file_latest_rmf task_include_rmf task_Task.hpp

Nested Relationships

This class is a nested type of Class Task.

Class Documentation

class rmf_task::Task::Booking

Basic information about how the task was booked, e.g. what its name is, when it should start, and what its
priority is.

Public Functions

Booking (std::string id_, rmf_traffic::Time earliest_start_time_, ConstPriorityPtr priority_, bool auto-

matic_ = false)
Constructor

Parameters
* [in] id_: The identity of the booking
* [in] earliest_start_time_: The earliest time that the task may begin
* [in] priority_: The priority of the booking
* [in] automatic_: Whether this booking was automatically generated

const std::string &id () const
The unique id for this booking.

rmf_traffic::Time earliest_start_time () const
Get the earliest time that this booking may begin.

ConstPriorityPtr priority () const
Get the priority of this booking.

bool automatic () const

1.3.

Full API 67

rmf_task, Release 1.0.0

Class Task::Description

* Defined in file_latest_rmf_task_include_rmf_task_Task.hpp

Nested Relationships

This class is a nested type of Class Task.

Nested Types

e Struct Description::Info

Inheritance Relationships

Derived Types

* public rmf_task::requests::ChargeBattery::Description (Class ChargeBat-

tery::Description)

e public rmf_task::requests::Clean: :Description (Class Clean::Description)
e public rmf_task::requests::Delivery: :Description (Class Delivery::Description)

* public rmf_task::requests::Loop: :Description (Class Loop::Description)

Class Documentation

class rmf_task::Task::Description

An abstract interface to define the specifics of this task. This implemented description will differentiate this task
from others.

Subclassed by rmf_task::requests::ChargeBattery::Description, rmf_task::requests::Clean::Description,
rmf_task::requests::Delivery::Description, rmf_task::requests::Loop::Description

Public Functions

virtual ConstModelPtr make_model (rmf traffic::Time earliest_start_time, const Parameters

¶meters) const =0
Generate a Model for the task based on the unique traits of this description

Parameters

* [in] earliest_start_time: The earliest time this task should begin execution. This is
usually the requested start time for the task.

* [in] parameters: The parameters that describe this AGV

virtual /nfo generate_info (const State &initial_state, const Parameters ¶meters)

const =
Generate a plain text info description for the task, given the predicted initial state and the task planning
parameters.

68

Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Parameters
* [in] initial_state: The predicted initial state for the task
* [in] parameters: The task planning parameters
virtual ~Description () = default

struct Info
Public Members
std::string category
std::string detail
Class Task::Model

* Defined in file_latest_rmf_task_include_rmf_task_Task.hpp

Nested Relationships

This class is a nested type of Class Task.

Class Documentation

class rmf_task::Task::Model
An abstract interface for computing the estimate and invariant durations of this request

Public Functions

virtual std::optional<Estimate> estimate_finish (const Srate &initial_state, const Con-
straints &task_planning_constraints, const
TravelEstimator &travel_estimator) const

Estimate the state of the robot when the task is finished along with the time the robot has to wait before
commencing the task

virtual rmf traffic::Duration invariant duration () const =0
Estimate the invariant component of the task’s duration.

virtual ~Model () = default

Class Task::Tag

* Defined in file_latest_rmf_task_include_rmf_task_Task.hpp

1.3. Full API 69

rmf_task, Release 1.0.0

Nested Relationships

This class is a nested type of Class Task.

Class Documentation

class rmf_task::Task::Tag
Basic static information about the task.

Public Functions
Tag (ConstBooking Ptr booking_, Header header_)
Constructor.

const ConstBookingPtr &booking () const
The booking information of the request that this 7ask is carrying out.

const Header &header () const
The header for this Tusk.

Class TaskPlanner

* Defined in file_latest_rmf task_include_rmf task TaskPlanner.hpp

Nested Relationships
Nested Types

* Class TaskPlanner::Assignment
* Class TaskPlanner::Configuration

* Class TaskPlanner::Options

Class Documentation

class rmf_ task::TaskPlanner

Public Types

enum TaskPlannerError
Values:

enumerator low_battery
None of the agents in the initial states have sufficient initial charge to even head back to their charging
stations. Manual intervention is needed to recharge one or more agents.

enumerator limited capacity
None of the agents in the initial states have sufficient battery capacity to accommodate one or more
requests. This may be remedied by increasing the battery capacity or by lowering the threshold_soc
in the state configs of the agents or by modifying the original request.

70 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

using Assignments = std::vector<std::vector<Assignment>>
Container for assignments for each agent.

using Result = std::variant<Assignments, TaskPlannerError>

Public Functions

TaskPlanner (Configuration configuration, Options default_options)
Constructor

Parameters
* [in] configuration: The configuration for the planner

* [in] default_options: Default options for the task planner to use when solving for as-
signments. These options can be overriden each time a plan is requested.

const Configuration &configuration () const
Get a const reference to configuration of this task planner.

const Options &default_options () const
Get a const reference to the default planning options.

Options &default_options ()
Get a mutable reference to the default planning options.

Result plan (rmf_traffic::Time time_now, std::vector<State> agents, std::vector<ConstRequestPtr> re-

quests)
Generate assignments for requests among available agents. The default Options of this TaskPlanner in-

stance will be used.

Parameters
* [in] time_now: The current time when this plan is requested
* [in] agents: The initial states of the agents/AGVs that can undertake the requests
* [in] requests: The set of requests that need to be assigned among the agents/AGVs

Result plan (rmf_traffic::Time time_now, std::vector<State> agents, std::vector<ConstRequestPtr> re-
quests, Options options)
Generate assignments for requests among available agents. Override the default parameters

Parameters
* [in] time_now: The current time when this plan is requested
* [in] agents: The initial states of the agents/AGVs that can undertake the requests
* [in] requests: The set of requests that need to be assigned among the agents/AGVs

* [in] options: The options to use for this plan. This overrides the default Options of the
TaskPlanner instance

double compute_cost (const Assignments &assignments) const
Compute the cost of a set of assignments.

class Assignment

1.3.

Full API 71

rmf_task, Release 1.0.0

Public Functions

Assignment (rmf_task::ConstRequestPtr request, State finish_state, rmf_traffic::Time deploy-

ment_time)
Constructor

Parameters
* [in] request: The task request for this assignment
* [in] state: The state of the agent at the end of the assigned task
* [in] earliest_start_time: The earliest time the agent will begin exececuting this

task
const rmf_task::ConstRequestPtr &request () const
const State &€£inish state () const
const rmf_traffic::Time deployment_time () const

class Configuration
The Configuration class contains planning parameters that are immutable for each 7askPlanner instance

and should not change in between plans.

Public Functions

Configuration (Parameters parameters, Constraints constraints, ConstCostCalculatorPtr

cost_calculator)
Constructor

Parameters
* [in] parameters: The parameters that describe the agents

e [in] constraints: The constraints that apply to the agents
* [in] cost_calculator: An object that tells the planner how to calculate cost

const Parameters ¶meters () const
Get the parameters that describe the agents.

Configuration ¶meters (Parameters parameters)
Set the parameters that describe the agents.

const Constraints &constraints () const
Get the constraints that are applicable to the agents.

Configuration &constraints (Constraints constraints)
Set the constraints that are applicable to the agents.

const ConstCostCalculatorPtr &cost_calculator () const
Get the CostCalculator.

Configuration &cost_calculator (ConstCostCalculatorPtr cost_calculator)
Set the CostCalculator. If a nullptr is passed, the BinaryPriorityCostCalculator is used by the planner.

class Options
The Options class contains planning parameters that can change between each planning attempt.

72 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Public Functions

Options (bool greedy, std::function<bool)
> interrupter = nullptrConstRequestFactoryPtr finishing_request = nullptrConstructor

Parameters

* [in] greedy: If true, a greedy approach will be used to solve for the task assignments.
Optimality is not guaranteed but the solution time may be faster. If false, an A* based approach
will be used within the planner which guarantees optimality but may take longer to solve.

* [in] interrupter: A function that can determine whether the planning should be inter-
rupted.

e [in] finishing_request: A request factory that generates a tailored task for each
agent/AGV to perform at the end of their assignments

Options &greedy (bool value)
Set whether a greedy approach should be used.

bool greedy () const
Get whether a greedy approach will be used.

Options &interrupter (std::function<bool)
> interrupterSet an interrupter callback that will indicate to the planner if it should stop trying to plan

const std::function<bool () > &interrupter
constGet the interrupter that will be used in this Options.

Options &finishing_ request (ConstRequestFactoryPtr finishing_request)
Set the request factory that will generate a finishing task.

ConstRequestFactoryPtr £inishing_request () const
Get the request factory that will generate a finishing task.

Class TaskPlanner::Assignment

* Defined in file_latest_rmf_task_include_rmf_task_TaskPlanner.hpp

Nested Relationships

This class is a nested type of Class TaskPlanner.

Class Documentation

class rmf_task::TaskPlanner::Assignment

1.3. Full API 73

rmf_task, Release 1.0.0

Public Functions

Assignment (rmf _task::ConstRequestPtr request, State finish_state, rmf_traffic::Time deploy-

ment_time)
Constructor

Parameters
* [in] request: The task request for this assignment
* [in] state: The state of the agent at the end of the assigned task
* [in] earliest_start_time: The earliest time the agent will begin exececuting this task
const rmf_task::ConstRequestPtr &request () const
const State &€inish state () const

const rmf_traffic::Time deployment_time () const

Class TaskPlanner::Configuration

* Defined in file_latest_rmf_task_include_rmf_task_TaskPlanner.hpp

Nested Relationships

This class is a nested type of Class TaskPlanner.

Class Documentation

class rmf_task::TaskPlanner::Configuration
The Configuration class contains planning parameters that are immutable for each TaskPlanner instance and
should not change in between plans.

Public Functions

Configuration (Parameters parameters, Constraints constraints, ConstCostCalculatorPtr

cost_calculator)
Constructor

Parameters
* [in] parameters: The parameters that describe the agents
* [in] constraints: The constraints that apply to the agents
* [in] cost_calculator: An object that tells the planner how to calculate cost

const Parameters ¶meters () const
Get the parameters that describe the agents.

Configuration ¶meters (Parameters parameters)
Set the parameters that describe the agents.

74 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

const Constraints &constraints () const
Get the constraints that are applicable to the agents.

Configuration &constraints (Constraints constraints)
Set the constraints that are applicable to the agents.

const ConstCostCalculatorPtr &cost_calculator () const
Get the CostCalculator.

Configuration &cost_calculator (ConstCostCalculatorPtr cost_calculator)
Set the CostCalculator. If a nullptr is passed, the BinaryPriorityCostCalculator is used by the planner.

Class TaskPlanner::Options

* Defined in file_latest_rmf task_include_rmf task TaskPlanner.hpp

Nested Relationships

This class is a nested type of Class TaskPlanner.

Class Documentation

class rmf_task::TaskPlanner: :0ptions

The Options class contains planning parameters that can change between each planning attempt.

Public Functions

Options (bool greedy, std::function<bool)
> interrupter = nullptrConstRequestFactoryPtr finishing_request = nullptrConstructor

Parameters

* [in] greedy: If true, a greedy approach will be used to solve for the task assignments. Opti-
mality is not guaranteed but the solution time may be faster. If false, an A* based approach will
be used within the planner which guarantees optimality but may take longer to solve.

* [in] interrupter: A function that can determine whether the planning should be inter-
rupted.

* [in] finishing_request: A request factory that generates a tailored task for each
agent/AGV to perform at the end of their assignments

Options &greedy (bool value)
Set whether a greedy approach should be used.

bool greedy () const
Get whether a greedy approach will be used.

Options &interrupter (std::function<bool)
> interrupterSet an interrupter callback that will indicate to the planner if it should stop trying to plan

const std::function<bool () > &interrupter
constGet the interrupter that will be used in this Options.

1.3.

Full API 75

rmf_task, Release 1.0.0

Options &€inishing_request (ConstRequestFactoryPtr finishing_request)
Set the request factory that will generate a finishing task.

ConstRequestFactoryPtr £inishing_request () const
Get the request factory that will generate a finishing task.

Class TravelEstimator

* Defined in file_latest_rmf task_include_rmf _task Estimate.hpp

Nested Relationships
Nested Types

e Class TravelEstimator::Result

Class Documentation

class rmf_task::TravelEstimator
A class to estimate the cost of travelling between any two points in a navigation graph. Results will be memoized
for efficiency.

Public Functions

TravelEstimator (const Parameters ¶meters)
Constructor

Parameters
* [in] parameters: The parameters for the robot

std::optional<Result> estimate (const rmf_traffic::agv::Plan::Start &start, const

rmf_traffic::agv::Plan::Goal &goal) const
Estimate the cost of travelling.

class Result
The result of a travel estimation.

Public Functions
rmf_traffic::Duration duration () const
How long the travelling will take.

double change_in_charge () const
How much the battery will drain while travelling.

76 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Class TravelEstimator::Result
* Defined in file_latest_rmf_task_include_rmf_task_Estimate.hpp
Nested Relationships

This class is a nested type of Class TravelEstimator.

Class Documentation

class rmf_task::TravelEstimator: :Result
The result of a travel estimation.

Public Functions

rmf_traffic::Duration duration () const
How long the travelling will take.

double change_in_charge () const
How much the battery will drain while travelling.

Class VersionedString

* Defined in file_latest_rmf_task_include_rmf_task_VersionedString.hpp
Nested Relationships
Nested Types

* Class VersionedString::Reader

* Class VersionedString::View

Class Documentation

class rmf_task::VersionedString

Public Functions

VersionedString (std::string initial_value)
Construct a versioned string

Parameters

* [in] initial_value: The initial value of this versioned string

1.3. Full API

77

rmf_task, Release 1.0.0

void update (std::string new_value)
Update the value of this versioned string

Parameters
* [in] new_value: The new value for this versioned string

View view () const
Get a view of the current version of the string.

class Reader

Public Functions
Reader ()
Construct a Reader.

std::shared_ptr<const std::string> read (const View &view)
Read from the View.

If this Reader has never seen this View before, then this function will return a reference to the string
that the View contains. Otherwise, if this Reader has seen this View before, then this function will
return a nullptr.

Parameters
e [in] wview: The view that the Reader should look at

class View
A snapshot view of a VersionedString. This is thread-safe to read even while the VersionedString is being
modified. Each VersionedString::Reader instance will only view this object once; after the first viewing it
will return a nullptr.

The contents of this View can only be retrieved by a VersionedString::Reader

Class VersionedString::Reader

* Defined in file_latest_rmf_task_include_rmf_task_VersionedString.hpp

Nested Relationships

This class is a nested type of Class VersionedString.

Class Documentation

class rmf_task::VersionedString: :Reader

78 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Public Functions

Reader ()
Construct a Reader.

std::shared_ptr<const std::string> read (const View &view)
Read from the View.

If this Reader has never seen this View before, then this function will return a reference to the string that
the View contains. Otherwise, if this Reader has seen this View before, then this function will return a
nullptr.

Parameters

e [in] wview: The view that the Reader should look at

Class VersionedString::View

* Defined in file_latest_rmf_task_include_rmf task VersionedString.hpp

Nested Relationships

This class is a nested type of Class VersionedString.

Class Documentation

class View
A snapshot view of a VersionedString. This is thread-safe to read even while the VersionedString is being
modified. Each VersionedString::Reader instance will only view this object once; after the first viewing it will
return a nullptr.

The contents of this View can only be retrieved by a VersionedString::Reader

1.3.3 Functions
Template Function rmf_task::detail::insertion_cast

* Defined in file_latest_rmf task_include_rmf task_detail_impl_CompositeData.hpp

Function Documentation

template<typename T>
CompositeData::InsertResult<T> rmf_task::detail: :insertion_cast (CompositeData::InsertResult<std::any>
result)

1.3. Full API 79

rmf_task, Release 1.0.0

Function rmf_task::standard_waypoint_name

* Defined in file_latest_rmf_task_include_rmf_task_Header.hpp

Function Documentation

std::string rmf_task: :standard_waypoint_name (const rmf_traffic::agv::Graph &graph, std::size_t

waypoint)

1.3.4 Defines

Define RMF_TASK_DEFINE_COMPONENT

* Defined in file_latest_rmf_task_include_rmf_task_CompositeData.hpp

Define Documentation

RMF_TASK_DEFINE_COMPONENT (7ype, Name)

Define a component class that is convenient to use in a CompositeData instance. The defined class will contain
only one field whose type is specified by Type. The name of the class will be Name.

1.3.5 Typedefs

Typedef rmf_task::ActivatorPtr

* Defined in file_latest_rmf_task_include_rmf_task_Activator.hpp

Typedef Documentation

using rmf_task: :ActivatorPtr = std::shared_ptr<Activator>

Typedef rmf_task::ConstActivatorPtr

* Defined in file_latest_rmf_task_include_rmf_task_Activator.hpp

Typedef Documentation

using rmf_task: :ConstActivatorPtr = std::shared_ptr<const Activator>

80

Chapter 1.

rmf_task API

rmf_task, Release 1.0.0

Typedef rmf_task::ConstCostCalculatorPtr

* Defined in file_latest_rmf_task_include_rmf_task_CostCalculator.hpp

Typedef Documentation

using rmf_task::ConstCostCalculatorPtr = std::shared_ptr<const CostCalculator>

Typedef rmf_task::ConstLogPir

¢ Defined in file_latest_rmf_task_include_rmf_task_Log.hpp

Typedef Documentation

using rmf_task: :ConstLogPtr = std::shared_ptr<const Log>

Typedef rmf_task::ConstParametersPtr

* Defined in file_latest_rmf_task_include_rmf_task_Parameters.hpp

Typedef Documentation

using rmf_task::ConstParametersPtr = std::shared_ptr<const Parameters>

Typedef rmf_task::ConstPriorityPtr

* Defined in file_latest_rmf_task_include_rmf_task_Priority.hpp

Typedef Documentation

using rmf_task::ConstPriorityPtr = std::shared_ptr<const Priority>

Typedef rmf_task::ConstRequestFactoryPtr

* Defined in file_latest_rmf_task_include_rmf_task_RequestFactory.hpp

Typedef Documentation

using rmf_task: :ConstRequestFactoryPtr = std::shared_ptr<const RequestFactory>

1.3. Full API 81

rmf_task, Release 1.0.0

Typedef rmf_task::ConstRequestPtr

* Defined in file_latest_rmf_task_include_rmf_task_Request.hpp

Typedef Documentation

using rmf_task: :ConstRequestPtr = std::shared_ptr<const Request>

Typedef rmf_task::ConstTravelEstimatorPtr

* Defined in file_latest_rmf_task_include_rmf_task_Estimate.hpp

Typedef Documentation

using rmf_task::ConstTravelEstimatorPtr = std::shared_ptr<const TravelEstimator>

Typedef rmf_task::CostCalculatorPtr

* Defined in file_latest_rmf_task_include_rmf_task_CostCalculator.hpp

Typedef Documentation

using rmf_task::CostCalculatorPtr = std::shared_ptr<CostCalculator>

Typedef rmf_task::events::SimpleEventStatePtr

* Defined in file_latest_rmf_task_include_rmf_task_events_SimpleEventState.hpp

Typedef Documentation

using rmf_task::events::SimpleEventStatePtr = std::shared_ptr<SimpleEventState>

Typedef rmf_task::PriorityPtr

* Defined in file_latest_rmf_task_include_rmf_task_Priority.hpp

Typedef Documentation

using rmf_task::PriorityPtr = std::shared_ptr<Priority>

82 Chapter 1. rmf_task API

rmf_task, Release 1.0.0

Typedef rmf_task::RequestFactoryPtr

* Defined in file_latest_rmf_task_include_rmf_task_RequestFactory.hpp

Typedef Documentation

using rmf_task::RequestFactoryPtr = std::shared_ptr<RequestFactory>

Typedef rmf_task::RequestPtr

* Defined in file_latest_rmf_task_include_rmf_task_Request.hpp

Typedef Documentation

using rmf_task: :RequestPtr = std::shared_ptr<Request>

1.3. Full API

83

rmf_task, Release 1.0.0

84

Chapter 1. rmf_task API

R

rmf_task::Activator (C++ class), 8
rmf_task::Activator::activate (C++ func-

rmf_task::Activator

rmf_task::Activator:

rmf_task::Activator:

rmf_task::Activator:

tion), 9

9

tion), 9
function), 9

tion), 10

::Activate (C++ type),
:Activator (C++ func-
radd_activator (C++

:restore (C++ func-

rmf_task::ActivatorPtr (C++ type), 80
rmf_task::BackupFileManager (C++ class), 11

rmf_task::BackupFileManager: :BackupFileManager
rmf_task::CompositeDatas::
rmf_task::BackupFileManager: :
rmf_task::BackupFileManager:
rmf_task::BackupFileManager:
rmf_task::BackupFileManager:
rmf_task::BackupFileManager:
rmf_task::BackupFileManager:
rmf_task::BackupFileManager::
rmf_task::BackupFileManager::
rmf_task::BinaryPriorityScheme

rmf_task::BinaryPriorityScheme::

rmf_task::BinaryPriorityScheme: :

rmf_task::BinaryPriorityScheme::

(C++ function), 11
(C++ function), 11
(C++ function), 11
class), 11, 12

(C++ function), 12
(C++ function), 11
class), 12, 13

(C++ function), 12, 13
(C++ function), 12, 13
class), 13

(C++ function), 13
(C++ function), 13

(C++ function), 13

tion), 15

rmf_task::CompositeData:

(C++ function), 14

rmf_task::CompositeData:

tion), 15

rmf_task::CompositeData:

tion), 14, 15

rmf_task::CompositeData:

function), 14, 15

rmf_task::CompositeData:

(C++ function), 14, 15

rmf_task::CompositeData:

(C++ struct), 8, 15

rmf_task::CompositeData:

(C++ member), 8, 15

clear on_shutdown (C++ member), 8,15

:clear_on_startup
:Group (C++
:Group: :makeIREpbask:
:make_group

:Robot (C++

Robot : : readfmf_task::Constraints

Robot : :writgmf_task::Constraints:

(C++

rmf_task: :CompositeData (C++ class), 14
rmf_task::CompositeData: :clear (C++ func-

rmf_task::CompositeData:

tion), 14

:insert

INDEX

:CompositeData
terase (C++ func-

:get (C++ func-

(C++

:insert_or_assign
:InsertResult

:InsertResult::inserted

InsertResult::value

:with (C++ func-

rmf_task::ConstActivatorPtr (C++ type), 80

rmf_task::ConstCostCalculatorPtr

type), 81

rmf_task:
rmf_task:
rmf_task:
rmf_task:

function), 16

(C++ function), 16

(C++ function), 16

(C++

:ConstLogPtr (C++ type), 81
:ConstParametersPtr (C++ type), 81
:ConstPriorityPtr (C++ type), 81
:Constraints (C++ class), 15
:Constraints::Constraints (C++

::drain_battery

:recharge_soc

rmf_task::Constraints::threshold_soc

(C++ function), 16

make_coSggga§é§§éﬁg9nstRequestFactoryPtr

type), 81

(C++

make_higggg£gg§§ﬁ§ConstRequestPtr(C+4-QW6L82

rmf_task::ConstTravelEstimatorPtr (C++

make_low_priorif¥Re) 82

rmf_task::CostCalculatorPtr (C++ type), 82
rmf_task::detail: :Backup (C++ class), 16
rmf_task::detail::Backup: :make (C++ func-

85

rmf_task, Release 1.0.0

tion), 17 rmf_task::Event::State::dependencies
rmf_task::detail::Backup::sequence (C++ (C++ function), 21, 24

function), 16 rmf_task::Event::State::detail (C++ func-
rmf_task::detail::Backup::state (C++ tion), 21, 23

function), 16 rmf_task::Event::State::finished (C++
rmf_task::detail::insertion_cast (C++ function), 21, 23

function), 79 rmf_task::Event::State::id (C++ function),
rmf_task::detail: :Resume (C++ class), 17 21,23
rmf_task::detail::Resume: :make (C++ func- rmf_task::Event::State::log (C++ function),

tion), 17 21,23
rmf_task::detail::Resume: :operator () rmf_task::Event::State::name (C++ func-

(C++ function), 17 tion), 21, 23
rmf_task::Estimate (C++ class), 17 rmf_task::Event::State::status (C++ func-
rmf_task::Estimate::Estimate (C++ func- tion), 21, 23

tion), 18 rmf_task::Event::State::Status (C++ type),
rmf_task::Estimate::finish_state (C++ 20, 23

function), 18 rmf_task: :Event::Status (C++ enum), 18
rmf_task::Estimate::wait_until (C++ func- rmf_task::Event::Status::Blocked (C++

tion), 18 enumerator), 18
rmf_task: :Event (C++ class), 18 rmf_task::Event::Status::Canceled (C++
rmf_task::Event: :AssignID (C++ class), 19,21 enumerator), 19
rmf_task::Event::AssignID::assign (C++ rmf_task::Event::Status::Completed (C++

function), 19, 21 enumerator), 19
rmf_task::Event::AssignID::AssignID rmf_task::Event::Status::Delayed (C++

(C++ function), 19, 21 enumerator), 19
rmf_task::Event::AssignID: :make (C++ rmf_task::Event::Status::Error (C++ enu-

function), 20, 22 merator), 18
rmf_task::Event::AssignIDPtr (C++1type),19 rmf_task::Event::Status::Failed (C++
rmf_task::Event::ConstSnapshotPtr (C++ enumerator), 19

type), 19 rmf_task::Event::Status::Killed (C++
rmf_task::Event::ConstStatePtr (C++ type), enumerator), 19

19 rmf_task::Event::Status::Skipped (C++
rmf_task: :Event::sequence_status (C++ enumerator), 19

function), 19 rmf_task::Event::Status::Standby (C++
rmf_task::Event::Snapshot (C++ class), 20,22 enumerator), 19
rmf_task::Event::Snapshot::dependencies rmf_task::Event::Status::Underway (C++

(C++ function), 20, 22 enumerator), 19
rmf_task::Event::Snapshot::detail (C++ rmf_task::Event::Status::Uninitialized

function), 20, 22 (C++ enumerator), 18
rmf_task::Event::Snapshot::id (C++ func- rmf_task::events::SimpleEventState (C++

tion), 20, 22 class), 24
rmf_task::Event::Snapshot::1log (C++ func- rmf_task::events::SimpleEventState::add_dependency

tion), 20, 22 (C++ function), 25
rmf_task::Event::Snapshot: :make (C++ rmf_task::events::SimpleEventState: :dependencies

function), 20, 23 (C++ function), 25
rmf_task::Event::Snapshot: :name (C++ rmf_task::events::SimpleEventState::detail

function), 20, 22 (C++ function), 24
rmf_task::Event::Snapshot::status (C++ rmf_task::events::SimpleEventState::id

function), 20, 22 (C++ function), 24
rmf_task::Event::State (C++ class), 20, 23 rmf_task::events::SimpleEventState::log
rmf_task::Event::State::~State (C++ func- (C++ function), 24

tion), 21, 24 rmf_task::events::SimpleEventState: :make
rmf_task::Event::State::ConstStatePtr (C++ function), 25

(C++ type), 20, 23 rmf_task::events::SimpleEventState: :name

86 Index

rmf_task, Release 1.0.0

(C++ function), 24
rmf_task::events::SimpleEventState:
(C++ function), 24
rmf_task::events::SimpleEventState:
(C++ function), 25
rmf_task::events::SimpleEventState:
(C++ function), 24
rmf_task::events::SimpleEventState:
(C++ function), 24

rmf_task::Log::Reader::Iterable::iterator
:status (C++ function), 28, 31-33
rmf_task::Log::Reader::Iterable::iterator: :operato:
:update_depd@enfiierion), 28, 30, 32
rmf_task::Log: :Reader: :read (C++ function),
:update_deta7l 30
rmf_task::Log: :Reader: :Reader (C++ func-
:update_log tion), 27, 30
rmf_task::Log::Tier (C++ enum), 26
rmf_task::events::SimpleEventState: :updartmfnamsk: :Log: :Tier: :Error (C++ enumera-
(C++ function), 24 tor), 26
rmf_task::events::SimpleEventState: :updatmfstasks:Log::Tier:
(C++ function), 24 26
rmf_task::events::SimpleEventStatePtr rmf_task::Log::Tier:
(C++ type), 82 enumerator), 26
rmf_task: :Header (C++ class), 25 rmf_task::Log::Tier:
rmf_task: :Header: :category (C++ function), ator), 26

::operato:

: Info (C++ enumerator),
:Uninitialized (C++

:Warning (C++ enumer-

25 rmf_task::Log: :View (C++ class), 28, 33
rmf_task::Header: :detail (C++ function), 25 rmf_task: :Log: :view (C++ function), 27
rmf_task::Header: :Header (C++ function), 25 rmf_task::Log: :warn (C++ function), 26
rmf_task::Header::original_duration_estimmfetask::Parameters (C++ class), 33

(C++ function), 25
rmf_task: :Log (C++ class), 26
rmf_task::Log: :Entry (C++ class), 27, 29
rmf_task::Log::Entry::seq (C++ function),

rmf_task::Parameters: :ambient_sink (C++
function), 34

rmf_task::Parameters:
(C++ function), 34

:battery_system

27,29 rmf_task::Parameters::motion_sink (C++
rmf_task::Log: :Entry::text (C++ function), function), 34

27,29 rmf_task::Parameters: :Parameters (C++
rmf_task::Log::Entry::tier (C++ function), function), 34

27,29 rmf_task::Parameters::planner (C++ func-
rmf_task::Log::Entry::time (C++ function), tion), 34

27,29 rmf_task::Parameters::tool_sink (C++
rmf_task: :Log: :error (C++ function), 27 function), 34
rmf_task: :Log: :info (C++ function), 26 rmf_task: :Payload (C++ class), 35
rmf_task::Log: :insert (C++ function), 27 rmf_task::Payload: :brief (C++ function), 35
rmf_task: :Log: :Log (C++ function), 26 rmf_task::Payload: :Component (C++ class),
rmf_task: :Log: :push (C++ function), 27 35, 36
rmf_task: :Log: :Reader (C++ class), 27, 30 rmf_task::Payload: :Component: :compartment
rmf_task::Log: :Reader::Iterable (C++ (C++ function), 35, 36

class), 27, 30, 31 rmf_task::Payload: :Component: :Component
rmf_task::Log: :Reader::Iterable: :begin (C++ function), 35, 36

(C++ function), 28, 30, 31 rmf_task::Payload: :Component: :quantity
rmf_task::Log::Reader::Iterable: :const_iteratornC++ function), 35, 36

(C++ type), 28, 30, 31 rmf_task::Payload: :Component::sku (C++
rmf_task::Log::Reader::Iterable: :end function), 35, 36

(C++ function), 28, 30, 31 rmf_task::Payload: :components (C++ func-
rmf_task::Log::Reader::Iterable::iterator tion), 35

(C++ class), 28, 30-32
rmf_task::Log::Reader::Iterable:
(C++ function), 28, 31-33
rmf_task::Log::Reader::Iterable:
(C++ function), 28, 30, 32
rmf_task::Log::Reader::Iterable:

(C++ function), 28, 30, 32, 33

rmf_task::Payload: :Payload (C++ function),
:iterator: :oper¥tor!=

rmf_task: :Phase (C++ class), 37
:iteratormfopesktoPkase: :Active (C++ class), 37, 39

rmf_task::Phase::Active::~Active (C++
:iterator: : opedanaiony, 37, 39

rmf_task::Phase::Active::estimate_remaining time

Index 87

rmf_task, Release 1.0.0

(C++ function), 37, 39
rmf_task::Phase::Active::

(C++ function), 37, 39
rmf_task::Phase::Active::

final_ event

tag (C++ func-

tion), 37, 39
rmf_task::Phase: :Completed (C++ class), 37,
40

rmf_task::Phase::Completed
(C++ function), 37, 40
rmf_task::Phase::Completed
(C++ function), 37, 40
rmf_task::Phase::Completed:
(C++ function), 37, 40
rmf_task::Phase::Completed
(C++ function), 37, 40

::Completed

::finish_time

:snapshot

::start_time

rmf_ task::Phase::ConstActivePtr (C++
type), 37

rmf_task::Phase::ConstCompletedPtr (C++
type), 37

rmf_task::Phase::ConstSnapshotPtr (C++
type), 37

rmf_task::Phase: :ConstTagPtr (C++ type), 37

rmf_task: :Phase: :Pending (C++ class), 37, 40

rmf_task::Phase::Pending: :Pending (C++
function), 38, 40

rmf_task::Phase::Pending::tag (C++ func-
tion), 38, 40

rmf_task::phases::RestoreBackup: :Active:
(C++ function), 43, 44
rmf_task::phases::RestoreBackup: :Active:
(C++ function), 43, 44
rmf_task::phases::RestoreBackup: :Active:
(C++ function), 43, 44
rmf_task::phases::RestoreBackup: :Active:
(C++ function), 43, 44
rmf_task::phases::RestoreBackup: :Active:
(C++ function), 43, 44
rmf_task::phases::RestoreBackup: :Active:
(C++ function), 43, 44
rmf_task::phases::RestoreBackup: :ActivePt

(C++ type), 43
rmf_task::PriorityPtr (C++ type), 82
rmf_task: :Request (C++ class), 45
rmf_task::Request: :booking (C++ function),

45
rmf_task::Request::description (C++ func-
tion), 45
rmf_task::Request::Request (C++ function),
45

rmf_task: :RequestFactory (C++ class), 46

rmf_task::RequestFactory::~RequestFactory
(C++ function), 46

rmf_task::RequestFactory: :make_request
(C++ function), 46

rmf_task::Phase::Pending::will_be_skippedmf_task::RequestFactoryPtr (C++ fype), 83

(C++ function), 38, 40
rmf_task: :Phase: :Snapshot (C++ class), 38,41

rmf_task: :RequestPtr (C++ type), 83
rmf_task::requests::ChargeBattery (C++

rmf_task::Phase: :Snapshot::estimate_remaining_tdass), 46

(C++ function), 38, 41
rmf_task::Phase: :Snapshot::final_event
(C++ function), 38, 41
rmf_task::Phase: :Snapshot: :make
function), 38, 41
rmf_task::Phase: :Snapshot: :tag (C++ func-
tion), 38, 41
rmf_task::Phase:
rmf_task::Phase:

(C++

: Tag (C++ class), 38, 42
:Tag: :header (C++ func-

tion), 38, 42
rmf_task::Phase: :Tag: :1d (C++ function), 38,
42

rmf_task::Phase:
rmf_task::Phase:

:Tag: : Id (C++ type), 38,42
:Tag::Tag (C++ function),

rmf_task::requests::ChargeBattery::Descri
(C++ class), 47, 48
rmf_task::requests::ChargeBattery: :Descri
(C++ function), 47, 48
rmf_task::requests::ChargeBattery::Descri
(C++ function), 47, 48
rmf_task::requests::ChargeBattery::Descri
(C++ function), 47, 48
rmf_task::requests::ChargeBattery: ::make

(C++ function), 46
rmf_task::requests::ChargeBatteryFactory
(C++ class), 49
rmf_task::requests::ChargeBatteryFactory
(C++ function), 49

38,42 rmf_task::requests::ChargeBatteryFactory:
rmf_task: :phases::RestoreBackup (C++ (C++ function), 49
class), 43 rmf_task::requests::Clean (C++ class), 49
rmf_task::phases::RestoreBackup::Active rmf_task::requests::Clean::Description
(C++ class), 43, 44 (C++ class), 50, 51
rmf_task::phases::RestoreBackup: :Active:rmfttimake:remaénting:€lmen: :Description::e
(C++ function), 43, 44 (C++ function), 50, 51
rmf_task::phases::RestoreBackup: :Active:rfifnadskveneéquests::Clean: :Description::g
(C++ function), 43, 44 (C++ function), 50, 51
88 Index

:make
:parsing_ f:
:restorati
:restorati
ttag

:update_loc

r

ption

ption: :ger
ption: :mal
ption: :mal
:ChargeBa
:make_reaqt

nd_waypoil

enerate_1i1

rmf_task, Release 1.0.0

rmf_task::requests::Clean: :Description: :make (C++ class), 58

(C++ function), 50, 51 rmf_task::requests::ParkRobotFactory: :make_request
rmf_task::requests::Clean: :Description: :make_mdd&l+ function), 58

(C++ function), 50, 51 rmf_task::requests::ParkRobotFactory: :ParkRobotFact
rmf_task::requests::Clean: :Description: :start_w&pefuntction), 58

(C++ function), 50, 51 rmf_task::standard_waypoint_name (C++
rmf_task::requests::Clean: :make (C++ function), 80

function), 49 rmf_task::State (C++ class), 59
rmf_task::requests::Delivery (C++ class), rmf_task::State::battery_soc (C++ func-

52 tion), 59
rmf_task::requests::Delivery: :Descriptiommf_task::State::dedicated_charging_waypoint

(C++ class), 52, 54 (C++ function), 59
rmf_task::requests::Delivery::DescriptiommfdrepkffStaeténgexrtoact_plan_start

(C++ function), 53, 55 (C++ function), 60
rmf_task::requests::Delivery::DescriptiommfdrepkffSwate: : load (C++ function), 60

(C++ function), 53, 55 rmf_task::State::load_basic (C++ function),
rmf_task::requests::Delivery::Description: :drogd®ff_waypoint

(C++ function), 53, 55 rmf_task::State::orientation (C++ func-
rmf_task::requests::Delivery::Description: :gendim)ci%info

(C++ function), 53, 54 rmf_task::State::project_plan_start
rmf_task::requests::Delivery::Description: :makegC++ function), 60

(C++ function), 53, 55 rmf_task::State::RMF_TASK_DEFINE_COMPONENT
rmf_task::requests::Delivery: :Description: :makeGrokfuiction), 59

(C++ function), 53, 54 rmf_task::State: :time (C++ function), 59
rmf_task::requests::Delivery::DescriptiommfpagikadState: :waypoint (C++ function), 59

(C++ function), 53, 55 rmf_task: :Task (C++ class), 60
rmf_task::requests::Delivery: :Descriptionmfptaekkp: Task: dAspéusd€++ class), 61, 65

(C++ function), 53, 54 rmf_task::Task::Active::~Active (C++
rmf_task::requests::Delivery::Description: :pickurpction)tv2, 66

(C++ function), 53, 54 rmf_task::Task::Active::active_phase
rmf_task::requests::Delivery::Description: :pick@swhAmpmwamLol, 65

(C++ function), 53, 54 rmf_task::Task::Active::active_phase_start_time
rmf_task::requests::Delivery::Description: :StanC++ function), 61, 65

(C++ type), 53, 54 rmf_task::Task::Active: :backup (C++ func-
rmf_task::requests::Delivery: ::make (C++ tion), 61, 65

function), 52 rmf_task::Task::Active: :Backup (C++ type),
rmf_task::requests: :Loop (C++ class), 55 61, 65
rmf_task::requests::Loop::Description rmf_task::Task::Active: :cancel (C++ func-

(C++ class), 56, 57 tion), 62, 66
rmf_task::requests::Loop::Description::fimfshawkyp®ark: :Active::completed_phases

(C++ function), 56, 57 (C++ function), 61, 65
rmf_task::requests::Loop::Description::gemérbaskinfask: :Active::estimate_remaining_time

(C++ function), 56, 57 (C++ function), 61, 65
rmf_task::requests::Loop::Description: :maké_task::Task::Active::finished (C++

(C++ function), 56, 58 function), 61, 65
rmf_task::requests::Loop: :Description: :maké_madkl:Task::Active::interrupt (C++

(C++ function), 56, 57 function), 61, 65
rmf_task::requests::Loop: :Description: :numflbepk: :Task::Active::kill (C++ func-

(C++ function), 56, 57 tion), 62, 66
rmf_task::requests::Loop::Description::stmfttwakpoTask: :Active: :make_resumer

(C++ function), 56, 57 (C++ function), 63, 67
rmf_task::requests: :Loop: :make (C++ func- rmf_task::Task::Active::pending_phases

tion), 55 (C++ function), 61, 65
rmf_task::requests::ParkRobotFactory rmf_task::Task::Active: :Resume (C++ type),

Index 89

rmf_task, Release 1.0.0

61, 65
rmf_task::Task::Active:
tion), 62, 66
rmf_task::Task::Active:
tion), 62, 66
rmf_task::Task::Active:

(C++ function), 61, 65
rmf_task::Task::Active:
61, 65

:rewind (C++ func-

:skip (C++ func-

:tag (C++ function),

rmf_task::Task::ActivePtr (C++ type), 61
rmf_task::Task: :Booking (C++ class), 63, 67

rmf_task::Task::Booking:

function), 63, 67

rmf_task::Task::Booking:

function), 63, 67

rmf_task::Task::Booking:

(C++ function), 63, 67

rmf_task::Task::Booking:

63, 67

rmf_task::Task::Booking:

function), 63, 67

rmf_task::Task::ConstBookingPtr

type), 61

rautomatic (C++

:Booking (C++

rmf_task::Task::Tag: :Tag (C++ function), 64,

70

rmf_task::TaskPlanner (C++ class), 70

rmf_task::TaskPlanner:
class), 71,73

:status_overview rmf_ task::TaskPlanner:

(C++ function), 72, 74
rmf_task::TaskPlanner:
(C++ function), 72, 74
rmf_task::TaskPlanner:
(C++ function), 72, 74
rmf_task::TaskPlanner:
(C++ function), 72, 74
rmf_task::TaskPlanner:

type), 70

cearliest_start_trmmetask::TaskPlanner:

:1d (C++ function),
:priority (C++

(C++

rmf_task::Task::ConstDescriptionPtr

(C++ type), 61

rmf_task::Task::ConstModelPtr (C++ type),

61

rmf_task::Task::ConstTagPtr (C++ type), 61
rmf_task::Task: :Description (C++ class), 63,

68

rmf_task::Task::Description:

:~Description

rmf_task::Task::Description:
rmf_task::Task::Description:
rmf_task::Task::Description:

rmf_task::Task::Description:

(C++ function), 64, 69
(C++ function), 63, 68
struct), 8, 64, 69

(C++ member), 8, 64, 69

(C++ member), 8, 64, 69

:generate_info

:Info (C++

(C++ function), 71
rmf_task::TaskPlanner:
(C++ class), 72, 74
rmf_task::TaskPlanner:
(C++ function), 71
rmf_task::TaskPlanner:
(C++ function), 72, 74
rmf_task::TaskPlanner:

:Assignment

:Assignment:

:compute_cost
:Configuration
:configuration
:Configuration:

:Configuration:

(C++ function), 72, 74,75

rmf_task::TaskPlanner:
(C++ function), 72,75
rmf_task::TaskPlanner:
(C++ function), 72, 74
rmf_task::TaskPlanner:
(C++ function), 71
rmf_task::TaskPlanner:
class), 72,75
rmf_task::TaskPlanner:

:Configuration:
:Configuration:

:default_options

(C++
:Assignment: :Assignment
:Assignment: :deployment_time
:Assignment::finish_state
:request

:Assignments (C++

:Configuratio:
:constraints
:cost_calculat

:parameters

(C++ function), 73,75, 76

rmf_task::TaskPlanner:

:Info::category

(C++ function), 73,75

rmf_task::TaskPlanner:

:Info::detail

(C++ function), 73,75

rmf_task::TaskPlanner:

:make_model

:Options (C++
:Options::finishing_request
:Options: :greedy
:Options::interrupter
:Options: :0Options

rmf_task::Task::Description:

(C++ function), 63, 68

rmf_task::Task: :Model (C++ class), 64, 69
rmf_task::Task::Model::~Model (C++ func-

tion), 64, 69

rmf_task::Task::Model::estimate_finish

(C++ function), 64, 69

(C++ function), 73,75
rmf_task::TaskPlanner:
71
rmf_task::TaskPlanner:
71
rmf_task::TaskPlanner:
function), 71

rmf_task::Task::Model::invariant_duratiommf_ task::TaskPlanner:

(C++ function), 64, 69

rmf_task::Task: :Tag (C++ class), 64,70
rmf_task::Task::Tag: :booking (C++ func-

tion), 64, 70

rmf_task::Task::Tag: :header (C++ function),

64,70

(C++ enum), 70
rmf_task::TaskPlanner:

(C++ enumerator), 70
rmf_task::TaskPlanner:

(C++ enumerator), 70

:plan (C++ function),
:Result (C++ type),
:TaskPlanner (C++
:TaskPlannerError
:TaskPlannerError

:TaskPlannerError

rmf_task::TravelEstimator (C++ class), 76

90

Index

c:limited_c:

::1low_batte:

rmf_task, Release 1.0.0

rmf_task::TravelEstimator:

(C++ function), 76

rmf_task::TravelEstimator:

class), 76, 77

rmf_task::TravelEstimator:

(C++ function), 76, 77

rmf_task::TravelEstimator:

(C++ function), 76, 77

rmf_task::TravelEstimator:

(C++ function), 76

:estimate

:Result (C++
:Result::change_in_charge
:Result::duration

:TravelEstimator

rmf_task::VersionedString (C++ class), 77

rmf_task::VersionedString:

class), 78

rmf_task::VersionedString:

(C++ function), 78, 79

rmf_task::VersionedString:

(C++ function), 78, 79

rmf_task::VersionedString:

function), 78

rmf_task::VersionedString:

(C++ function), 77

rmf_task::VersionedString:

class), 78, 79

rmf_task::VersionedString:

function), 78

:Reader (C++
:Reader: :read
:Reader: :Reader
:update (C++
:VersionedString
:View (C++

rview (C++

RMF_TASK_DEFINE_COMPONENT (C macro), 80

Index

91

	rmf_task API
	Class Hierarchy
	File Hierarchy
	Full API

	Index

