
OpenRMF
Release 1.0.0

Open Source Robotics Corporation

Jun 09, 2021

CONTENTS

1 Overview 1
1.1 Getting started . 1
1.2 Interfacing with OpenRMF . 1
1.3 OpenRMF modules . 3
1.4 Contributing to OpenRMF . 3
1.5 Getting support . 7
1.6 Frequently Asked Questions . 9
1.7 About and contact . 12
1.8 Roadmap . 13

i

ii

CHAPTER

ONE

OVERVIEW

1.1 Getting started

1.1.1 Installation

Building rmf_core from source requires gcc version 8 or higher, or clang version 6 or higher.

mkdir ws_rmf/src -p
cd ws_rmf/src/
git clone https://github.com/osrf/rmf_core.git
cd ../
source /opt/ros/eloquent/setup.bash
rosdep update
rosdep install --from-paths src --ignore-src -yr
colcon build --cmake-args -DCMAKE_BUILD_TYPE=RELEASE

To manually override the compiler version, prefix the colcon command with the CXX parameter.

sudo apt update && sudo apt install g++-8
CXX=g++-8 colcon build --cmake-args -DCMAKE_BUILD_TYPE=RELEASE

1.1.2 Demonstrations

This repository holds a number of demonstrations and examples of working with rmf_core and the other packages in
the RMF ecosystem.

1.2 Interfacing with OpenRMF

There are several interface points with RMF core, as shown in the arrows between the blue central box and the orange
boxes in the diagram above. The goal of these interfaces is to create a “narrow” and simple set of messages that allow
rmf_core to integrate with the following elements of a deployment.

1

https://github.com/open-rmf/rmf_demos

OpenRMF, Release 1.0.0

1.2.1 Robot fleet integration

The rmf_fleet_msgs package contains four messages and is intended to carry the interactions between rmf_core and a
vendor-provided (typically proprietary) fleet manager for a collection of robots. It is expected that a RMF deployment
will consist of multiple robot fleets, often operating at different levels of RMF integration. For example, one fleet may
only be willing to supply FleetState messages (observation-only) whereas another fleet in the same facility may be
willing to follow RMF DestinationRequest messages. RMF is specifically designed to allow this type of “mixed levels
of control” and to plan accordingly.

• rmf_fleet_msgs/FleetState on topic fleet_states. This message consists of a list of rmf_fleet_msgs/RobotState
messages, each of which contains the state of a particular robot. This includes the level of the facility the robot is
on, its X- and Y- offset (in meters) from the origin of that level’s map, its current destination and path (if known),
and so on.

• rmf_fleet_msgs/DestinationRequest on topic destination_requests is a request for a particular robot to go to a
particular destination.

• rmf_fleet_msgs/ModeRequest on topic mode_requests is a request for a particular robot to change modes, for
example, from MOVING to PAUSED, in order to preserve spatial separation between robots of different fleets.

• rmf_fleet_msgs/PathRequest on topic path_requests is a request for a particular robot to follow a particular path.

As mentioned above, several levels of integration are possible between RMF and vendor-controlled Fleet Managers. The
following table captures the required messages for each integration feature. In general, the more integration features that
are available for a particular fleet, the more efficient the combined system operations will be, because each integration
feature gives additional options for rmf_core to perform traffic management. For example, a fleet that only supports the
“state reporting” integration feature will always require that rmf_core totally clear its predicted travel lane of all other
robots, whereas fleets that support “pause/resume motion” or “complete paths” allow many other potential options for
de-conflicting robot traffic.

Integration Feature Required Message Default topic name
state reporting rmf_fleet_msgs/FleetState fleet_states
set destinations rmf_fleet_msgs/DestinationRequest destination_requests
pause/resume motion rmf_fleet_msgs/ModeRequest mode_requests
set complete paths rmf_fleet_msgs/PathRequest path_requests

1.2.2 Door integration

The rmf_door_msgs package contains two messages. This interface allows RMF to open and close motorized doors
for robots as they move throughout a facility.

• rmf_door_msgs/DoorState messages are periodically sent by door controllers to rmf_core. These messages ex-
press the current mode of the door as CLOSED, MOVING, or OPEN

• rmf_door_msgs/DoorRequest messages are sent from rmf_core to doors when they need to open or close for
robot operations.

2 Chapter 1. Overview

OpenRMF, Release 1.0.0

1.3 OpenRMF modules

OpenRMF consists of several modules/libraries that together provide the combined feature set of OpenRMF. Each
module provides usage and API documentation at the pages linked below.

• rmf_battery

• rmf_ros2

• rmf_simulation

• rmf_task

• rmf_traffic

• rmf_utils

• rmf_visualization

1.4 Contributing to OpenRMF

Contributions via pull requests to the various RMF-related repositories are welcome.

In general, we expect contributors to follow the ROS 2 contributing guidelines, with the exception of code style (see
Coding style guide, below).

1.4.1 Coding style guide

The RMF code adopts slightly different guidelines from the ROS 2 style guide. The objective of this section is to
highlight the divergences of RMF code style from the ROS 2 style guide for C++.

C++

Standard

• The eloquent release uses C++14

• The foxy release uses C++17

Style

Line Length

Maximum line length is 80 characters.

1.3. OpenRMF modules 3

https://openrmf.readthedocs.io/projects/rmf-battery
https://openrmf.readthedocs.io/projects/rmf-ros2
https://openrmf.readthedocs.io/projects/rmf-simulation
https://openrmf.readthedocs.io/projects/rmf-task
https://openrmf.readthedocs.io/projects/rmf-traffic
https://openrmf.readthedocs.io/projects/rmf-utils
https://openrmf.readthedocs.io/projects/rmf-visualization
https://index.ros.org/doc/ros2/Contributing/
https://index.ros.org/doc/ros2/Contributing/Code-Style-Language-Versions/#codestyle

OpenRMF, Release 1.0.0

File Naming and Extensions

• Original files with public interfaces should follow CamelCase convention

• Header files should use the .hpp extension and must include header guards

• Implementation files should use the .cpp extension.

Braces

• Use open braces without indenting the braces for function, class, and struct definitions and on if, else, while, for,
etc.

• Cuddle braces on namespace definitions only

Indentations

• Two-space indentation per level

• Two-space continued indentation for function definition/call parameters

Variable Naming

• All variable names should use snake_case

• Private member variables should be prefixed with an underscore _

Function and Method Naming

• All function names including class member functions should use snake_case

Classes

• Class names should always use CamelCase.

• Privacy specifiers (public, private, protected) should not be indented.

• Only member functions are allowed in public scope in public APIs (no public data members).

• Two-space indentation for other class statements.

• Leading colon between a constructor and its member initialization list.

• No space/indent for constructor initialization lists.

• Trailing commas between members in the initialization lists.

• Do not use struct in public APIs. Usage in internal implementation is allowed.

• Abstract interface classes should contain only pure abstract member functions. No data fields or function imple-
mentations are allowed.

4 Chapter 1. Overview

OpenRMF, Release 1.0.0

Namespaces

• Cuddle brace for namespaces with a space between the name and the opening brace.

• No indentation for namespace contents (including nested namespaces).

• Closing brace to be followed with a comment with the namespace name, e.g.:

namespace A {

/* code */

} // namespace A

Pointer and Reference Syntax Alignment

Left-align * and &

Comments and Doc Comments

Use /// and /** */ comments for documentation purposes and // style comments for notes and general comments

Examples

Description of a class

namespace A {
namespace B {
class UpperCamelCase
{
public:

UpperCamelCase(Foo foo, Bar bar)
: _foo(foo),
_bar(bar),
_baz(Baz(foo, bar))

{
}

/// This is an example function
///
/// And here is a longer description blah blah blah
///
/// \param[in] in_value
/// It takes in a value
///
/// \param[out] out_value
/// It puts out a value
///
/// \return some result
ResultType snake_case_member_functions(

(continues on next page)

1.4. Contributing to OpenRMF 5

OpenRMF, Release 1.0.0

(continued from previous page)

InputValue in_value,
OutputValue& out_value) const;

private:
/* ... etc ... */

};

} // namespace B
} // namespace A

A class that is only used internally.

class ImplementationClass
{
public:

/// documentation
double snake_case_public_members_uncommon;

void foo(Bar bar);

private:

int _lead_with_underscore;

};

A class that defines an interface.

class AbstractInterfaceClass
{
public:

/// Only pure abstract member functions.
/// No data fields or implemented
///functions
virtual ReturnType pure_virtual_function(
SomeArgType arg1,
SomeArgType arg2) = 0;

};

RMF Linter

Most of these styles and restrictions can be checked with the ament_uncrustify command line tool using this configu-
ration file.

Example usage.

cd workspace/
wget https://raw.githubusercontent.com/osrf/rmf_core/master/rmf_utils/test/format/rmf_
→˓code_style.cfg

(continues on next page)

6 Chapter 1. Overview

https://github.com/osrf/rmf_core/blob/master/rmf_utils/test/format/rmf_code_style.cfg
https://github.com/osrf/rmf_core/blob/master/rmf_utils/test/format/rmf_code_style.cfg

OpenRMF, Release 1.0.0

(continued from previous page)

source /opt/ros/foxy/setup.bash
ament_uncrustify -c rmf_code_style.cfg .

The –reformat option may be passed into the ament_uncrustify call to apply the changes in place. However, this is
recommended only after manually reviewing the changes.

1.5 Getting support

We provide several mechanism for getting help. Whether you have run into a problem using OpenRMF, or you just
want more information about some aspect of it not covered in the documentation, one of the below options should have
you covered. Using the correct resource, particularly the interactive forums, will ensure you get a helpful response to
your query quickly.

1.5.1 Documentation

User guide

The primary documentation for OpenRMF is the Programming Multiple Robots with ROS 2 book. This documentation
should be your first stop when learning how to use OpenRMF, or how a particular module works.

Developer’s guide

If you are interested in contributing a bug fix, a new feature, or an entire new module to OpenRMF, stop by the Devel-
oper’s Guide first. Complying with the Developer’s Guide will ensure that your pull request gets merged faster.

1.5.2 OpenRMF Discussions

When you have a problem that you cannot solve yourself using the documentation, your next stop should be the Open-
RMF Discussions website. This is an Question and Answer site for OpenRMF.

When using OpenRMF Discussions, it is important to act as a responsible member of the OpenRMF community.
Follow the ROS guidelines about support, especially the section on etiquette.

Most importantly, before asking your question conduct a search for another question with the same problem. It is
possible that someone else has already found the answer, so conducting a search may get you a solution to your problem
much faster than asking a question and waiting for someone to respond.

If you don’t find an answer to your problem by searching, then ask a new question explaining what is wrong in as much
detail as you can. Please provide as much as possible of the following information. The more information you provide,
the sooner you will get a useful response.

• Post the complete output for error messages, starting from the command that you ran. If the output is long, use
a service such as GitHub Gists and link that from your post. Copy the text using copy-and-paste, do not re-type
it by hand.

• Do not post screenshots of text. Post the text itself. This aides people in searching for your error and makes it
more likely that they will help you.

• If you are having a problem with a GUI tool, post a screenshot or movie of the tool showing the problem.

1.5. Getting support 7

https://osrf.github.io/ros2multirobotbook/
https://openrmf.readthedocs.io
https://openrmf.readthedocs.io
https://openrmf.readthedocs.io
https://github.com/open-rmf/rmf/discussions
https://github.com/open-rmf/rmf/discussions
http://wiki.ros.org/Support
http://wiki.ros.org/Support#Etiquette
https://github.com/open-rmf/rmf/discussions/new
https://gist.github.com/

OpenRMF, Release 1.0.0

• Describe the environment in which you are running the software in as much detail as possible. Provide the names
and versions of packages you are using, your platform/OS and version, hardware used, your compiler tool chain
and version (if relevant), how you installed OpenRMF, etc.

• Provide a complete and detailed set of steps to reproduce the problem. If someone can reproduce your problem,
they are more likely to find a way to fix it quickly.

• If you are following a tutorial, provide a link to it and state where in the tutorial your problem occurs.

• Make the topic of your post or bug report or feature request detailed. A topic that says “Problem making it go”
won’t attract many people to help you.

• If you include code snippets, use the formatting function to make sure they appear correctly. Check the preview
before you post.

• When you have a problem, Short, Self Contained, Correct (Compilable) Examples or Minimal, Complete, and
Verifiable Examples help us reproduce your error quickly and thus get help to you quickly.

• Describe what you have done already to try and fix the problem or to find its cause. Understanding what you
have already tried will ensure others do not waste time asking if you have tried something and allow them to
more rapidly identify the cause of your problem.

1.5.3 Bug reports

If your problem is actually a bug in OpenRMF, then the issue tracker for the relevant repository should be your next
port of call. If you do not know which repository is relevant (although hopefully discussion of your problem on the
OpenRMF discussion board has identified that), then post an issue on the general OpenRMF repository and a developer
will help you shift it to the correct place.

When posting a bug report, it is important to be as detailed and accurate as possible. The bug report template will help
you fill in the necessary information, but in general all the same advice that applies to the Discourse discussion board
also applies to filing a bug report. You should also post a debug trace if possible, to identify where in the source code
the problem occurs.

When giving your bug report a title, do not include something in the title that indicates it is a bug report, such as starting
the title with [Bug] or Bug report:. Instead, use the Bug issue label to indicate that it is a bug report.

Do not post requests for help on the issue trackers. They will be closed and you will be directed to the correct place to
ask, slowing down the process of you getting help.

1.5.4 Feature requests

If OpenRMF doesn’t do something you need or want, please file a feature request. We want OpenRMF to cover as
many use cases as possible, but if we don’t know about your necessary features, we can’t put them on the roadmap.

When making a feature request, it helps to know as much about what you want. A feature request along the lines of “I
want it to control my robot” will likely be ignored, but a feature request that begins “Add support for robot fleets from
Company” and provides detailed use cases is likely to attract attention.

When giving your feature request a title, do not include something in the title that indicates it is a feature request, such
as starting the title with [Feature] or Feature request:. Instead, use the Enhancement issue label to indicate that it is a
bug report.

8 Chapter 1. Overview

http://sscce.org/
https://stackoverflow.com/help/mcve
https://stackoverflow.com/help/mcve
https://github.com/open-rmf/rmf

OpenRMF, Release 1.0.0

1.5.5 General ROS-related support

If you have problems or queries that are related to ROS in general rather than specific to OpenRMF, please see the ROS
support page for how to get help.

1.5.6 How not to get help

Please don’t post support requests that are not related to OpenRMF, or are about general programming problems. There
are more appropriate venues for those, such as Stack Overflow.

Do not contact the developers directly. Using the correct channels means everyone can see your question, and you are
more likely to get a response. If you contact a few developers directly, that is a lot less eyes on your problem (and a lot
more annoyed busy developers), and it also means that others cannot see the solution to your problem.

Do not post a request for help that just says “It doesn’t work.” No one will know how to help you.

1.6 Frequently Asked Questions

1.6.1 What is the difference between RoMi-H and rmf_core, in high level?

RoMi-H is an umbrella term for a wide range of open specifications and software tools that aim to ease the integration
and interoperability of robotic systems, building infrastructure, smart medical devices, and user interfaces with a focus
on the healthcare sector.

rmf_core is a collection of repositories and software libraries for an implementation of some of the core systems that
compose RoMi-H.

1.6.2 Why is RoMi-H spread across multiple GitHub accounts and repositories?

The development of RoMi-H is a collaborative research and development effort. Several different organizations are
involved in its development, and there is not yet a fixed protocol for where and how the constituent parts of RoMi-H
will be deposited. The organization of these packages may converge as the project continues to progress.

1.6.3 In an actual deployment, is RoMi-H something that is deployed into a server
or a robot?

RoMi-H is a collection of open specifications and software tools. Some of the specifications and software that falls
under the RoMi-H umbrella might run on robots, but for the most part it will be used as an intermediary to communicate
and negotiate between standalone systems. Since robots are usually deployed with their own proprietary fleet managers,
in most cases we expect RoMi-H to communicate with a fleet manager instead of running directly on a robot. However
users will be provided with RoMi-H software tools that can run directly on a robot to assist in cases where a robot
platform does not come with its own fleet manager.

In short, some parts of RoMi-H may run on servers, some on desktops, some on mobile devices, and some on robot
platforms.

1.6. Frequently Asked Questions 9

http://www.ros.org/support/
http://www.ros.org/support/
https://stackoverflow.com/

OpenRMF, Release 1.0.0

1.6.4 Does RoMi-H support high availability (e.g failover cluster)? Can it be load-
balanced?

The systems within RoMi-H are heterogeneous. Some systems are fully distributed, so there is no master that would
be a failure point. Other systems do require certain centralized services, and those services are being designed to have
failovers as well as ways to distribute their load, e.g. by using mirror servers.

1.6.5 Does RoMi-H run on ROS nodes?

Certain components in RoMi-H are being implemented using ROS2. For non-ROS2 systems, we are working on various
options for bridging between different middlewares. Much of that effort is concentrated in the SOSS project.

1.6.6 What is SOSS?

Please refer to the SOSS GitHub page. SOSS is a plugin-based framework for performing simple translations between
pub/sub middlewares. Since we expect RoMi-H to bridge many systems that are already running their own middlewares,
we are providing SOSS as one option for integrating a middleware into RoMi-H.

1.6.7 Are there design guidelines for integrating with RoMi-H?

RoMi-H is still in research and development, moving towards production deployment, and many of the APIs and
specifications are under active development. Design and integration guidelines will be coming out as the core APIs
solidify.

1.6.8 If I want a CI/CD pipeline to build my custom RoMi-H components, is there
already a template or docker image to help with this?

There is an ongoing effort to provide this, but it is not ready for public consumption yet.

1.6.9 Is RoMi-H production-ready?

RoMi-H is still in research and development, but we are aggressively moving towards deployability. We aim to have
the APIs stable and key features implemented by mid-2020.

1.6.10 Is there python version of RoMi-H?

We intend to provide Python bindings for the core APIs of RoMi-H, especially for robot fleet management. This work
has not yet begun, but it should be straightforward once the C++ APIs have stabilized.

10 Chapter 1. Overview

https://github.com/osrf/soss
https://github.com/osrf/soss

OpenRMF, Release 1.0.0

1.6.11 Is RoMi-H constrained to a particular DDS?

Just like how ROS2 is not constrained to any particular DDS, neither is RoMi-H. The choice of which DDS implemen-
tation to use will be determined by the system integrators who deploy a RoMi-H system in a given facility.

1.6.12 How do we specify the map layouts of a building, and tie together multiple
floors for that building?

Our tool for managing map layouts is available at here. Specifying multiple floors for a building is a feature that should
be finished in the very near future.

1.6.13 How can we specify the schedule of a fleet?

The API for specifying robot traffic schedules is undergoing enormous changes right now. A preliminary version of it
already exists, but I do not recommend familiarizing yourself with it, because it will be completely different very soon.

1.6.14 Which distribution of ROS2 is compatible with RoMi-H for production pur-
pose?

Currently rmf_core requires ROS2 eloquent for certain launch file features. In general, we are likely to be using the
latest release of ROS2 while doing research and development on RoMi-H.

1.6.15 How does rmf_traffic avoid mobile robot traffic conflicts?

When we are done implementing the traffic management solution, we will be doing a more extensive write-up on the
conflict avoidance and negotiation methods than what can reasonably fit in an FAQ, but here is a quick outline of the
methodology. There are two levels to traffic deconfliction: (1) prevention, and (2) resolution.

1. Prevention. Whenever possible, it would be good to prevent traffic conflicts from happening in the first place.
To facilitate this, we have implemented a platform agnostic Traffic Schedule Database. The traffic schedule is
a living database whose contents will change over time to reflect delays, cancelations, or route changes. All
fleet managers that are integrated into RoMi-H must report the expected itineraries of their vehicles to the traffic
schedule. With the information available on the schedule, compliant fleet managers can plan routes for their
vehicles that avoid conflicts with any other vehicles (no matter which fleet they belong to). rmf_traffic provides a
Planner class to help facilitate this for vehicles that behave like standard AGVs. In the future we intend to provide
a similar utility for AMRs.

2. Resolution. It is not always possible to perfectly prevent traffic conflicts. Mobile robots may experience delays
because of unanticipated obstacles in their environment, or the predicted schedule may be flawed for any number
of reasons. In cases where a conflict does arise, rmf_traffic has a Negotiation scheme. When the Traffic Schedule
Database detects an upcoming conflict between two or more schedule participants, it will send a conflict notice
out to the relevant fleet managers, and a negotiation between the fleet managers will begin. Each fleet manager
will submit its preferred itineraries, and each will respond with itineraries that can accommodate the others. A
third-party judge (deployed by the system integrator) will choose the set of proposals that is considered preferable
and notify the fleet managers about which itineraries they should follow.

1.6. Frequently Asked Questions 11

https://github.com/osrf/traffic_editor
https://github.com/osrf/rmf_core/blob/8cad142e5a5f14133e4e865beeac98fd46edb0e7/rmf_traffic/include/rmf_traffic/schedule/Database.hpp
https://github.com/osrf/rmf_core/blob/8cad142e5a5f14133e4e865beeac98fd46edb0e7/rmf_traffic/include/rmf_traffic/agv/Planner.hpp
https://github.com/osrf/rmf_core/blob/8cad142e5a5f14133e4e865beeac98fd46edb0e7/rmf_traffic/include/rmf_traffic/schedule/Negotiation.hpp

OpenRMF, Release 1.0.0

1.6.16 Why is this traffic management system so complicated?

RoMi-H has a number of system design constraints that create unique challenges for traffic management. The core goal
of RoMi-H is to facilitate system integration for heterogeneous mobile robot fleets that may be provided by different
vendors and may have different technical capabilities.

1. Vendors tend to want to keep their computing systems independent from other vendors. Since vendors are often
responsible for ensuring uptime and reliability on their computing infrastructure, they may view it as an unac-
ceptable liability to share computing resources with another vendor. This means that the traffic management
system must be able to function while being distributed across different machines on a network.

2. Different robot platforms may have different capabilities. Many valuable AGV platforms that are currently de-
ployed are not able to change their itineraries dynamically. Some AGV platforms can change course when in-
structed to, as long as they stick to a predefined navigation graph. Some AMR platforms can dynamically navigate
themselves around unanticipated obstacles in their environment. Since RoMi-H is meant to be an enabling tech-
nology, it is important that we design a system that can maximize the utility of all these different types of systems
without placing detrimental constraints on any of them.

These considerations led to the current design of distributed conflict prevention and distributed schedule negotiation.
There is plenty of space within the design to create simpler and more efficient subsets for categories of mobile robots
that fit certain sets of requirements, but these optimizations can be added later, building on top of the existing completely
generalized framework.

1.7 About and contact

1.7.1 About

1.7.2 Contact

To contact the developers of OpenRMF, please use the OpenRMF Discussions website. If you need help, please see
Getting support for more information on how to get it.

The core rmf packages provide the centralized functions of the Open Robotics Middleware Framework (OpenRMF).
These include task queuing, conflict-free resource scheduling, utilities to help create robot fleet adapters, and so on.

OpenRMF is built on ROS 2. However direct use of ROS 2 is not required to use Open-RMF.

To create a useful deployment, the core of rmf must be connected to many other subsystems, as shown in the following
diagram.

12 Chapter 1. Overview

https://github.com/open-rmf/rmf/discussions

OpenRMF, Release 1.0.0

1.8 Roadmap

A near-term roadmap of the entire RMF project (including and beyond rmf_core) can be found in the user manual here.

1.8. Roadmap 13

https://osrf.github.io/ros2multirobotbook/roadmap.html

	Overview
	Getting started
	Installation
	Demonstrations

	Interfacing with OpenRMF
	Robot fleet integration
	Door integration

	OpenRMF modules
	Contributing to OpenRMF
	Coding style guide
	C++
	Standard
	Style
	Line Length
	File Naming and Extensions
	Braces
	Indentations
	Variable Naming
	Function and Method Naming
	Classes
	Namespaces
	Pointer and Reference Syntax Alignment
	Comments and Doc Comments
	Examples

	RMF Linter

	Getting support
	Documentation
	User guide
	Developer’s guide

	OpenRMF Discussions
	Bug reports
	Feature requests
	General ROS-related support
	How not to get help

	Frequently Asked Questions
	What is the difference between RoMi-H and rmf_core, in high level?
	Why is RoMi-H spread across multiple GitHub accounts and repositories?
	In an actual deployment, is RoMi-H something that is deployed into a server or a robot?
	Does RoMi-H support high availability (e.g failover cluster)? Can it be load-balanced?
	Does RoMi-H run on ROS nodes?
	What is SOSS?
	Are there design guidelines for integrating with RoMi-H?
	If I want a CI/CD pipeline to build my custom RoMi-H components, is there already a template or docker image to help with this?
	Is RoMi-H production-ready?
	Is there python version of RoMi-H?
	Is RoMi-H constrained to a particular DDS?
	How do we specify the map layouts of a building, and tie together multiple floors for that building?
	How can we specify the schedule of a fleet?
	Which distribution of ROS2 is compatible with RoMi-H for production purpose?
	How does rmf_traffic avoid mobile robot traffic conflicts?
	Why is this traffic management system so complicated?

	About and contact
	About
	Contact

	Roadmap

